node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
CDC48 | NPL4 | YDL126C | YBR170C | Cell division control protein 48; AAA ATPase; subunit of polyUb-selective segregase complex involved in ERAD, INM-associated degradation (INMAD), mitotic spindle disassembly, macroautophagy, PMN, ribosome-associated degradation, ribophagy, homotypic ER membrane fusion, SCF complex disassembly, cell wall integrity during heat stress, and telomerase regulation; mobilizes membrane-anchored transcription factors by regulated Ub/proteasome-dependent processing (RUP); human ortholog VCP complements a cdc48 mutant. | Nuclear protein localization protein 4; Substrate-recruiting cofactor of the Cdc48p-Npl4p-Ufd1p segregase; assists Cdc48p in the dislocation of misfolded, polyubiquitinated ERAD substrates that are subsequently delivered to the proteasome for degradation; also involved in the regulated destruction of resident ER membrane proteins, such as HMG-CoA reductase (Hmg1/2p) and cytoplasmic proteins (Fbp1p); role in mobilizing membrane bound transcription factors by regulated ubiquitin/proteasome-dependent processing (RUP). | 0.999 |
CDC48 | UBX5 | YDL126C | YDR330W | Cell division control protein 48; AAA ATPase; subunit of polyUb-selective segregase complex involved in ERAD, INM-associated degradation (INMAD), mitotic spindle disassembly, macroautophagy, PMN, ribosome-associated degradation, ribophagy, homotypic ER membrane fusion, SCF complex disassembly, cell wall integrity during heat stress, and telomerase regulation; mobilizes membrane-anchored transcription factors by regulated Ub/proteasome-dependent processing (RUP); human ortholog VCP complements a cdc48 mutant. | UBX domain-containing protein that interacts with Cdc48p; ubiquitin regulatory X is also known as UBX. | 0.999 |
CDC48 | UFD1 | YDL126C | YGR048W | Cell division control protein 48; AAA ATPase; subunit of polyUb-selective segregase complex involved in ERAD, INM-associated degradation (INMAD), mitotic spindle disassembly, macroautophagy, PMN, ribosome-associated degradation, ribophagy, homotypic ER membrane fusion, SCF complex disassembly, cell wall integrity during heat stress, and telomerase regulation; mobilizes membrane-anchored transcription factors by regulated Ub/proteasome-dependent processing (RUP); human ortholog VCP complements a cdc48 mutant. | Ubiquitin fusion degradation protein 1; Substrate-recruiting cofactor of the Cdc48p-Npl4p-Ufd1p segregase; polyubiquitin binding protein that assists in the dislocation of misfolded, ERAD substrates that are subsequently delivered to the proteasome for degradation; involved in regulated destruction of ER membrane proteins such as HMG-CoA reductase (Hmg1/2p) and cytoplasmic proteins (Fbp1p); involved in mobilizing membrane bound transcription factors by regulated Ub/proteasome-dependent processing (RUP). | 0.999 |
NPL4 | CDC48 | YBR170C | YDL126C | Nuclear protein localization protein 4; Substrate-recruiting cofactor of the Cdc48p-Npl4p-Ufd1p segregase; assists Cdc48p in the dislocation of misfolded, polyubiquitinated ERAD substrates that are subsequently delivered to the proteasome for degradation; also involved in the regulated destruction of resident ER membrane proteins, such as HMG-CoA reductase (Hmg1/2p) and cytoplasmic proteins (Fbp1p); role in mobilizing membrane bound transcription factors by regulated ubiquitin/proteasome-dependent processing (RUP). | Cell division control protein 48; AAA ATPase; subunit of polyUb-selective segregase complex involved in ERAD, INM-associated degradation (INMAD), mitotic spindle disassembly, macroautophagy, PMN, ribosome-associated degradation, ribophagy, homotypic ER membrane fusion, SCF complex disassembly, cell wall integrity during heat stress, and telomerase regulation; mobilizes membrane-anchored transcription factors by regulated Ub/proteasome-dependent processing (RUP); human ortholog VCP complements a cdc48 mutant. | 0.999 |
NPL4 | UBX5 | YBR170C | YDR330W | Nuclear protein localization protein 4; Substrate-recruiting cofactor of the Cdc48p-Npl4p-Ufd1p segregase; assists Cdc48p in the dislocation of misfolded, polyubiquitinated ERAD substrates that are subsequently delivered to the proteasome for degradation; also involved in the regulated destruction of resident ER membrane proteins, such as HMG-CoA reductase (Hmg1/2p) and cytoplasmic proteins (Fbp1p); role in mobilizing membrane bound transcription factors by regulated ubiquitin/proteasome-dependent processing (RUP). | UBX domain-containing protein that interacts with Cdc48p; ubiquitin regulatory X is also known as UBX. | 0.999 |
NPL4 | UFD1 | YBR170C | YGR048W | Nuclear protein localization protein 4; Substrate-recruiting cofactor of the Cdc48p-Npl4p-Ufd1p segregase; assists Cdc48p in the dislocation of misfolded, polyubiquitinated ERAD substrates that are subsequently delivered to the proteasome for degradation; also involved in the regulated destruction of resident ER membrane proteins, such as HMG-CoA reductase (Hmg1/2p) and cytoplasmic proteins (Fbp1p); role in mobilizing membrane bound transcription factors by regulated ubiquitin/proteasome-dependent processing (RUP). | Ubiquitin fusion degradation protein 1; Substrate-recruiting cofactor of the Cdc48p-Npl4p-Ufd1p segregase; polyubiquitin binding protein that assists in the dislocation of misfolded, ERAD substrates that are subsequently delivered to the proteasome for degradation; involved in regulated destruction of ER membrane proteins such as HMG-CoA reductase (Hmg1/2p) and cytoplasmic proteins (Fbp1p); involved in mobilizing membrane bound transcription factors by regulated Ub/proteasome-dependent processing (RUP). | 0.999 |
SRX1 | TSA1 | YKL086W | YML028W | Sulfiredoxin; contributes to oxidative stress resistance by reducing cysteine-sulfinic acid groups in the peroxiredoxin Tsa1p, which is formed upon exposure to oxidants; conserved in higher eukaryotes; protein abundance increases in response to DNA replication stress. | Peroxiredoxin TSA1; Thioredoxin peroxidase; acts as both ribosome-associated and free cytoplasmic antioxidant; self-associates to form high-molecular weight chaperone complex under oxidative stress; chaperone activity essential for growth in zinc deficiency; required for telomere length maintenance; binds and modulates Cdc19p activity; protein abundance increases, forms cytoplasmic foci during DNA replication stress; TSA1 has a paralog, TSA2, that arose from the whole genome duplication; Belongs to the peroxiredoxin family. AhpC/Prx1 subfamily. | 0.992 |
SRX1 | TSA2 | YKL086W | YDR453C | Sulfiredoxin; contributes to oxidative stress resistance by reducing cysteine-sulfinic acid groups in the peroxiredoxin Tsa1p, which is formed upon exposure to oxidants; conserved in higher eukaryotes; protein abundance increases in response to DNA replication stress. | Peroxiredoxin TSA2; Stress inducible cytoplasmic thioredoxin peroxidase; cooperates with Tsa1p in the removal of reactive oxygen, nitrogen and sulfur species using thioredoxin as hydrogen donor; deletion enhances the mutator phenotype of tsa1 mutants; protein abundance increases in response to DNA replication stress; TSA2 has a paralog, TSA1, that arose from the whole genome duplication; Belongs to the peroxiredoxin family. AhpC/Prx1 subfamily. | 0.980 |
TSA1 | SRX1 | YML028W | YKL086W | Peroxiredoxin TSA1; Thioredoxin peroxidase; acts as both ribosome-associated and free cytoplasmic antioxidant; self-associates to form high-molecular weight chaperone complex under oxidative stress; chaperone activity essential for growth in zinc deficiency; required for telomere length maintenance; binds and modulates Cdc19p activity; protein abundance increases, forms cytoplasmic foci during DNA replication stress; TSA1 has a paralog, TSA2, that arose from the whole genome duplication; Belongs to the peroxiredoxin family. AhpC/Prx1 subfamily. | Sulfiredoxin; contributes to oxidative stress resistance by reducing cysteine-sulfinic acid groups in the peroxiredoxin Tsa1p, which is formed upon exposure to oxidants; conserved in higher eukaryotes; protein abundance increases in response to DNA replication stress. | 0.992 |
TSA1 | TSA2 | YML028W | YDR453C | Peroxiredoxin TSA1; Thioredoxin peroxidase; acts as both ribosome-associated and free cytoplasmic antioxidant; self-associates to form high-molecular weight chaperone complex under oxidative stress; chaperone activity essential for growth in zinc deficiency; required for telomere length maintenance; binds and modulates Cdc19p activity; protein abundance increases, forms cytoplasmic foci during DNA replication stress; TSA1 has a paralog, TSA2, that arose from the whole genome duplication; Belongs to the peroxiredoxin family. AhpC/Prx1 subfamily. | Peroxiredoxin TSA2; Stress inducible cytoplasmic thioredoxin peroxidase; cooperates with Tsa1p in the removal of reactive oxygen, nitrogen and sulfur species using thioredoxin as hydrogen donor; deletion enhances the mutator phenotype of tsa1 mutants; protein abundance increases in response to DNA replication stress; TSA2 has a paralog, TSA1, that arose from the whole genome duplication; Belongs to the peroxiredoxin family. AhpC/Prx1 subfamily. | 0.967 |
TSA2 | SRX1 | YDR453C | YKL086W | Peroxiredoxin TSA2; Stress inducible cytoplasmic thioredoxin peroxidase; cooperates with Tsa1p in the removal of reactive oxygen, nitrogen and sulfur species using thioredoxin as hydrogen donor; deletion enhances the mutator phenotype of tsa1 mutants; protein abundance increases in response to DNA replication stress; TSA2 has a paralog, TSA1, that arose from the whole genome duplication; Belongs to the peroxiredoxin family. AhpC/Prx1 subfamily. | Sulfiredoxin; contributes to oxidative stress resistance by reducing cysteine-sulfinic acid groups in the peroxiredoxin Tsa1p, which is formed upon exposure to oxidants; conserved in higher eukaryotes; protein abundance increases in response to DNA replication stress. | 0.980 |
TSA2 | TSA1 | YDR453C | YML028W | Peroxiredoxin TSA2; Stress inducible cytoplasmic thioredoxin peroxidase; cooperates with Tsa1p in the removal of reactive oxygen, nitrogen and sulfur species using thioredoxin as hydrogen donor; deletion enhances the mutator phenotype of tsa1 mutants; protein abundance increases in response to DNA replication stress; TSA2 has a paralog, TSA1, that arose from the whole genome duplication; Belongs to the peroxiredoxin family. AhpC/Prx1 subfamily. | Peroxiredoxin TSA1; Thioredoxin peroxidase; acts as both ribosome-associated and free cytoplasmic antioxidant; self-associates to form high-molecular weight chaperone complex under oxidative stress; chaperone activity essential for growth in zinc deficiency; required for telomere length maintenance; binds and modulates Cdc19p activity; protein abundance increases, forms cytoplasmic foci during DNA replication stress; TSA1 has a paralog, TSA2, that arose from the whole genome duplication; Belongs to the peroxiredoxin family. AhpC/Prx1 subfamily. | 0.967 |
UBX5 | CDC48 | YDR330W | YDL126C | UBX domain-containing protein that interacts with Cdc48p; ubiquitin regulatory X is also known as UBX. | Cell division control protein 48; AAA ATPase; subunit of polyUb-selective segregase complex involved in ERAD, INM-associated degradation (INMAD), mitotic spindle disassembly, macroautophagy, PMN, ribosome-associated degradation, ribophagy, homotypic ER membrane fusion, SCF complex disassembly, cell wall integrity during heat stress, and telomerase regulation; mobilizes membrane-anchored transcription factors by regulated Ub/proteasome-dependent processing (RUP); human ortholog VCP complements a cdc48 mutant. | 0.999 |
UBX5 | NPL4 | YDR330W | YBR170C | UBX domain-containing protein that interacts with Cdc48p; ubiquitin regulatory X is also known as UBX. | Nuclear protein localization protein 4; Substrate-recruiting cofactor of the Cdc48p-Npl4p-Ufd1p segregase; assists Cdc48p in the dislocation of misfolded, polyubiquitinated ERAD substrates that are subsequently delivered to the proteasome for degradation; also involved in the regulated destruction of resident ER membrane proteins, such as HMG-CoA reductase (Hmg1/2p) and cytoplasmic proteins (Fbp1p); role in mobilizing membrane bound transcription factors by regulated ubiquitin/proteasome-dependent processing (RUP). | 0.999 |
UBX5 | UFD1 | YDR330W | YGR048W | UBX domain-containing protein that interacts with Cdc48p; ubiquitin regulatory X is also known as UBX. | Ubiquitin fusion degradation protein 1; Substrate-recruiting cofactor of the Cdc48p-Npl4p-Ufd1p segregase; polyubiquitin binding protein that assists in the dislocation of misfolded, ERAD substrates that are subsequently delivered to the proteasome for degradation; involved in regulated destruction of ER membrane proteins such as HMG-CoA reductase (Hmg1/2p) and cytoplasmic proteins (Fbp1p); involved in mobilizing membrane bound transcription factors by regulated Ub/proteasome-dependent processing (RUP). | 0.999 |
UFD1 | CDC48 | YGR048W | YDL126C | Ubiquitin fusion degradation protein 1; Substrate-recruiting cofactor of the Cdc48p-Npl4p-Ufd1p segregase; polyubiquitin binding protein that assists in the dislocation of misfolded, ERAD substrates that are subsequently delivered to the proteasome for degradation; involved in regulated destruction of ER membrane proteins such as HMG-CoA reductase (Hmg1/2p) and cytoplasmic proteins (Fbp1p); involved in mobilizing membrane bound transcription factors by regulated Ub/proteasome-dependent processing (RUP). | Cell division control protein 48; AAA ATPase; subunit of polyUb-selective segregase complex involved in ERAD, INM-associated degradation (INMAD), mitotic spindle disassembly, macroautophagy, PMN, ribosome-associated degradation, ribophagy, homotypic ER membrane fusion, SCF complex disassembly, cell wall integrity during heat stress, and telomerase regulation; mobilizes membrane-anchored transcription factors by regulated Ub/proteasome-dependent processing (RUP); human ortholog VCP complements a cdc48 mutant. | 0.999 |
UFD1 | NPL4 | YGR048W | YBR170C | Ubiquitin fusion degradation protein 1; Substrate-recruiting cofactor of the Cdc48p-Npl4p-Ufd1p segregase; polyubiquitin binding protein that assists in the dislocation of misfolded, ERAD substrates that are subsequently delivered to the proteasome for degradation; involved in regulated destruction of ER membrane proteins such as HMG-CoA reductase (Hmg1/2p) and cytoplasmic proteins (Fbp1p); involved in mobilizing membrane bound transcription factors by regulated Ub/proteasome-dependent processing (RUP). | Nuclear protein localization protein 4; Substrate-recruiting cofactor of the Cdc48p-Npl4p-Ufd1p segregase; assists Cdc48p in the dislocation of misfolded, polyubiquitinated ERAD substrates that are subsequently delivered to the proteasome for degradation; also involved in the regulated destruction of resident ER membrane proteins, such as HMG-CoA reductase (Hmg1/2p) and cytoplasmic proteins (Fbp1p); role in mobilizing membrane bound transcription factors by regulated ubiquitin/proteasome-dependent processing (RUP). | 0.999 |
UFD1 | UBX5 | YGR048W | YDR330W | Ubiquitin fusion degradation protein 1; Substrate-recruiting cofactor of the Cdc48p-Npl4p-Ufd1p segregase; polyubiquitin binding protein that assists in the dislocation of misfolded, ERAD substrates that are subsequently delivered to the proteasome for degradation; involved in regulated destruction of ER membrane proteins such as HMG-CoA reductase (Hmg1/2p) and cytoplasmic proteins (Fbp1p); involved in mobilizing membrane bound transcription factors by regulated Ub/proteasome-dependent processing (RUP). | UBX domain-containing protein that interacts with Cdc48p; ubiquitin regulatory X is also known as UBX. | 0.999 |