STRINGSTRING
thrA thrA thrB thrB thrC thrC dapB dapB leuD leuD leuC leuC leuB leuB leuA leuA ilvI ilvI ilvH ilvH dapD dapD serC serC dmlA dmlA hisG hisG hisD hisD hisC hisC hisB hisB hisH hisH hisA hisA hisF hisF hisI hisI dapA dapA lysA lysA serA serA asd asd ilvN ilvN ilvB ilvB ilvM ilvM ilvE ilvE ilvD ilvD ilvA ilvA ilvC ilvC dapF dapF lysC lysC
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
thrABifunctional: aspartokinase I (N-terminal); homoserine dehydrogenase I (C-terminal); Protein involved in threonine biosynthetic process, methionine biosynthetic process and homoserine biosynthetic process. (820 aa)
thrBHomoserine kinase; Catalyzes the ATP-dependent phosphorylation of L-homoserine to L-homoserine phosphate. Is also able to phosphorylate the hydroxy group on gamma-carbon of L-homoserine analogs when the functional group at the alpha-position is a carboxyl, an ester, or even a hydroxymethyl group. Neither L-threonine nor L-serine are substrates of the enzyme. (310 aa)
thrCL-threonine synthase; Catalyzes the gamma-elimination of phosphate from L- phosphohomoserine and the beta-addition of water to produce L- threonine. To a lesser extent, is able to slowly catalyze the deamination of L-threonine into alpha-ketobutyrate and that of L-serine and 3-chloroalanine into pyruvate. Is also able to rapidly convert vinylglycine to threonine, which proves that the pyridoxal p-quinonoid of vinylglycine is an intermediate in the TS reaction. (428 aa)
dapBDihydrodipicolinate reductase; Catalyzes the conversion of 4-hydroxy-tetrahydrodipicolinate (HTPA) to tetrahydrodipicolinate. Can use both NADH and NADPH as a reductant, with NADH being twice as effective as NADPH. Belongs to the DapB family. (273 aa)
leuD3-isopropylmalate dehydratase small subunit; Catalyzes the isomerization between 2-isopropylmalate and 3- isopropylmalate, via the formation of 2-isopropylmaleate. (201 aa)
leuC3-isopropylmalate dehydratase large subunit; Catalyzes the isomerization between 2-isopropylmalate and 3- isopropylmalate, via the formation of 2-isopropylmaleate; Belongs to the aconitase/IPM isomerase family. LeuC type 1 subfamily. (466 aa)
leuB3-isopropylmalate dehydrogenase, NAD(+)-dependent; Catalyzes the oxidation of 3-carboxy-2-hydroxy-4- methylpentanoate (3-isopropylmalate) to 3-carboxy-4-methyl-2- oxopentanoate. The product decarboxylates to 4-methyl-2 oxopentanoate. Belongs to the isocitrate and isopropylmalate dehydrogenases family. LeuB type 1 subfamily. (363 aa)
leuA2-isopropylmalate synthase; Catalyzes the condensation of the acetyl group of acetyl-CoA with 3-methyl-2-oxobutanoate (2-oxoisovalerate) to form 3-carboxy-3- hydroxy-4-methylpentanoate (2-isopropylmalate); Belongs to the alpha-IPM synthase/homocitrate synthase family. LeuA type 1 subfamily. (523 aa)
ilvIAcetolactate synthase III, valine sensitive, large subunit. (574 aa)
ilvHAcetolactate synthase III, valine sensitive, small subunit. (163 aa)
dapD2,3,4,5-tetrahydropyridine-2-carboxylate N-succinyltransferase; Protein involved in lysine biosynthetic process via diaminopimelate; Belongs to the transferase hexapeptide repeat family. (274 aa)
serC3-phosphoserine/phosphohydroxythreonine aminotransferase; Catalyzes the reversible conversion of 3- phosphohydroxypyruvate to phosphoserine and of 3-hydroxy-2-oxo-4- phosphonooxybutanoate to phosphohydroxythreonine. Is involved in both pyridoxine and serine biosynthesis; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. SerC subfamily. (362 aa)
dmlAD-malate oxidase, NAD-dependent; Catalyzes the NAD(+)-dependent oxidative decarboxylation of D-malate into pyruvate. Is essential for aerobic growth on D-malate as the sole carbon source. But is not required for anaerobic D-malate utilization, although DmlA is expressed and active in those conditions. Appears to be not able to use L-tartrate as a substrate for dehydrogenation instead of D-malate; Belongs to the isocitrate and isopropylmalate dehydrogenases family. (361 aa)
hisGATP phosphoribosyltransferase; Catalyzes the condensation of ATP and 5-phosphoribose 1- diphosphate to form N'-(5'-phosphoribosyl)-ATP (PR-ATP). Has a crucial role in the pathway because the rate of histidine biosynthesis seems to be controlled primarily by regulation of HisG enzymatic activity. (299 aa)
hisDBifunctional histidinal dehydrogenase/ histidinol dehydrogenase; Catalyzes the sequential NAD-dependent oxidations of L- histidinol to L-histidinaldehyde and then to L-histidine. (434 aa)
hisCHistidinol-phosphate aminotransferase; Protein involved in histidine biosynthetic process; Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. Histidinol-phosphate aminotransferase subfamily. (356 aa)
hisBImidazoleglycerolphosphate dehydratase and histidinol-phosphate phosphatase; Protein involved in histidine biosynthetic process. (355 aa)
hisHImidazole glycerol phosphate synthase, glutamine amidotransferase subunit; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisH subunit catalyzes the hydrolysis of glutamine to glutamate and ammonia as part of the synthesis of IGP and AICAR. The resulting ammonia molecule is channeled to the active site of HisF. (196 aa)
hisAN-(5'-phospho-L-ribosyl-formimino)-5-amino-1- (5'-phosphoribosyl)-4-imidazolecarboxamide isomerase; Protein involved in histidine biosynthetic process; Belongs to the HisA/HisF family. (245 aa)
hisFImidazole glycerol phosphate synthase, catalytic subunit with HisH; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisF subunit catalyzes the cyclization activity that produces IGP and AICAR from PRFAR using the ammonia provided by the HisH subunit; Belongs to the HisA/HisF family. (258 aa)
hisIPhosphoribosyl-amp cyclohydrolase; phosphoribosyl-ATP pyrophosphatase; Protein involved in histidine biosynthetic process; In the C-terminal section; belongs to the PRA-PH family. (203 aa)
dapADihydrodipicolinate synthase; Catalyzes the condensation of (S)-aspartate-beta-semialdehyde [(S)-ASA] and pyruvate to 4-hydroxy-tetrahydrodipicolinate (HTPA). Belongs to the DapA family. (292 aa)
lysADiaminopimelate decarboxylase, PLP-binding; Specifically catalyzes the decarboxylation of meso- diaminopimelate (meso-DAP) to L-lysine. Is not active against the DD- or LL-isomers of diaminopimelate; Belongs to the Orn/Lys/Arg decarboxylase class-II family. LysA subfamily. (420 aa)
serAD-3-phosphoglycerate dehydrogenase; Catalyzes the reversible oxidation of 3-phospho-D-glycerate to 3-phosphonooxypyruvate, the first step of the phosphorylated L- serine biosynthesis pathway. Also catalyzes the reversible oxidation of 2-hydroxyglutarate to 2-oxoglutarate. (410 aa)
asdAspartate-semialdehyde dehydrogenase, NAD(P)-binding; Catalyzes the NADPH-dependent formation of L-aspartate- semialdehyde (L-ASA) by the reductive dephosphorylation of L-aspartyl- 4-phosphate. (367 aa)
ilvNAcetolactate synthase I, valine sensitive, small subunit. (96 aa)
ilvBAcetolactate synthase I,valine-sensitive, large subunit. (562 aa)
ilvMPseudogene, acetolactate synthase 2 large subunit, valine-insensitive; acetolactate synthase II, large subunit, cryptic, interrupted. (87 aa)
ilvEBranched-chain amino acid aminotransferase; Acts on leucine, isoleucine and valine. (309 aa)
ilvDDihydroxyacid dehydratase. (616 aa)
ilvAL-threonine dehydratase, biosynthetic; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA. (514 aa)
ilvCKetol-acid reductoisomerase, NAD(P)-binding; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate. Also able to use 2-ketopantoate, 2-ketoisovalerate, 2-ketovalerate, 2-ketobutyrate [...] (491 aa)
dapFDiaminopimelate epimerase; Involved in the succinylase branch of the L-lysine biosynthesis and in the biosynthesis of the pentapeptide incorporated in the peptidoglycan moiety. Catalyzes the stereoinversion of LL-2,6-diaminoheptanedioate (L,L-DAP) to meso- diaminoheptanedioate (meso-DAP). (274 aa)
lysCLysine-sensitive aspartokinase 3; Aspartokinase III, lysine sensitive; Protein involved in lysine biosynthetic process via diaminopimelate and homoserine biosynthetic process. (449 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (18%) [HD]