Your Input: | |||||
talB | Transaldolase B; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway. (317 aa) | ||||
cra | Transcriptional repressor-activator for carbon metabolism; Global transcriptional regulator, which plays an important role in the regulation of carbon metabolism. Activates transcription of genes encoding biosynthetic and oxidative enzymes (involved in Krebs cycle, glyoxylate shunt and gluconeogenesis, such as ppsA and fbp). Represses genes involved in sugar catabolism, such as fruB, pfkA, pykF and adhE. Binds asymmetrically to the two half-sites of its operator. (334 aa) | ||||
pdhR | Pyruvate dehydrogenase complex repressor; Transcriptional repressor for the pyruvate dehydrogenase complex genes aceEF and lpd. (254 aa) | ||||
aceE | Pyruvate dehydrogenase, decarboxylase component E1, thiamine triphosphate-binding; Component of the pyruvate dehydrogenase (PDH) complex, that catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (887 aa) | ||||
aceF | Pyruvate dehydrogenase, dihydrolipoyltransacetylase component E2; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). It contains multiple copies of three enzymatic components: pyruvate dehydrogenase (E1), dihydrolipoamide acetyltransferase (E2) and lipoamide dehydrogenase (E3). (630 aa) | ||||
lpd | Dihydrolipoyl dehydrogenase; Lipoamide dehydrogenase is a component of the glycine cleavage system as well as of the alpha-ketoacid dehydrogenase complexes. (474 aa) | ||||
acnB | Aconitate hydratase 2; Involved in the catabolism of short chain fatty acids (SCFA) via the tricarboxylic acid (TCA)(acetyl degradation route) and the 2- methylcitrate cycle I (propionate degradation route). Catalyzes the reversible isomerization of citrate to isocitrate via cis-aconitate. Also catalyzes the hydration of 2-methyl-cis-aconitate to yield (2R,3S)-2-methylisocitrate. The apo form of AcnB functions as a RNA- binding regulatory protein. During oxidative stress inactive AcnB apo- enzyme without iron sulfur clusters binds the acnB mRNA 3' UTRs (untranslated regions), stabilize [...] (865 aa) | ||||
gcd | Glucose dehydrogenase; GDH is probably involved in energy conservation rather than in sugar metabolism; Belongs to the bacterial PQQ dehydrogenase family. (796 aa) | ||||
fabZ | (3R)-hydroxymyristol acyl carrier protein dehydratase; Involved in unsaturated fatty acids biosynthesis. Catalyzes the dehydration of short chain beta-hydroxyacyl-ACPs and long chain saturated and unsaturated beta-hydroxyacyl-ACPs. (151 aa) | ||||
accA | acetyl-CoA carboxylase, carboxytransferase, alpha subunit; Component of the acetyl coenzyme A carboxylase (ACC) complex. First, biotin carboxylase catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the carboxyltransferase to acetyl-CoA to form malonyl-CoA. Belongs to the AccA family. (319 aa) | ||||
fadE | Acyl coenzyme A dehydrogenase; Catalyzes the dehydrogenation of acyl-coenzymes A (acyl-CoAs) to 2-enoyl-CoAs, the first step of the beta-oxidation cycle of fatty acid degradation. Is required for E.coli to utilize dodecanoate or oleate as the sole carbon and energy source for growth. (814 aa) | ||||
prpR | Propionate catabolism operon regulatory protein; Involved in the transcriptional regulation of the propionate catabolism operon. (528 aa) | ||||
prpB | 2-methylisocitrate lyase; Involved in the catabolism of short chain fatty acids (SCFA) via the 2-methylcitrate cycle I (propionate degradation route). Catalyzes the thermodynamically favored C-C bond cleavage of (2R,3S)-2- methylisocitrate to yield pyruvate and succinate via an alpha-carboxy- carbanion intermediate; Belongs to the isocitrate lyase/PEP mutase superfamily. Methylisocitrate lyase family. (296 aa) | ||||
prpC | 2-methylcitrate synthase; Involved in the catabolism of short chain fatty acids (SCFA) via the tricarboxylic acid (TCA)(acetyl degradation route) and via the 2-methylcitrate cycle I (propionate degradation route). Catalyzes the Claisen condensation of propionyl-CoA and oxaloacetate (OAA) to yield 2-methylcitrate (2-MC) and CoA. Also catalyzes the condensation of oxaloacetate with acetyl-CoA to yield citrate but with a lower specificity. (389 aa) | ||||
prpD | 2-methylcitrate dehydratase; Involved in the catabolism of short chain fatty acids (SCFA) via the tricarboxylic acid (TCA)(acetyl degradation route) and via the 2-methylcitrate cycle I (propionate degradation route). Catalyzes the dehydration of 2-methylcitrate (2-MC) to yield the cis isomer of 2- methyl-aconitate. It is also able to catalyze the dehydration of citrate and the hydration of cis-aconitate at a lower rate. Due to its broad substrate specificity, it seems to be responsible for the residual aconitase activity of the acnAB-null mutant. Belongs to the PrpD family. (483 aa) | ||||
prpE | propionate--CoA ligase; Catalyzes the synthesis of propionyl-CoA from propionate and CoA. Also converts acetate to acetyl-CoA but with a lower specific activity (By similarity). (628 aa) | ||||
lacA | Thiogalactoside acetyltransferase; Catalyzes the CoA-dependent transfer of an acetyl group to the 6-O-methyl position of a range of galactosides, glucosides, and lactosides. May assist cellular detoxification by acetylating non-metabolizable pyranosides, thereby preventing their reentry into the cell (Probable). Belongs to the transferase hexapeptide repeat family. (203 aa) | ||||
lacY | Lactose permease; Responsible for transport of beta-galactosides into the cell, with the concomitant import of a proton (symport system). Can transport lactose, melibiose, lactulose or the analog methyl-1-thio-beta,D- galactopyranoside (TMG), but not sucrose or fructose. The substrate specificity is directed toward the galactopyranosyl moiety of the substrate. (417 aa) | ||||
lacZ | beta-D-galactosidase; Protein involved in carbohydrate catabolic process; Belongs to the glycosyl hydrolase 2 family. (1024 aa) | ||||
lacI | Lactose-inducible lac operon transcriptional repressor; Repressor of the lactose operon. Binds allolactose as an inducer. (360 aa) | ||||
cyoE | Protoheme IX farnesyltransferase; Converts heme B (protoheme IX) to heme O by substitution of the vinyl group on carbon 2 of heme B porphyrin ring with a hydroxyethyl farnesyl side group. (296 aa) | ||||
cyoD | Cytochrome o ubiquinol oxidase subunit IV; Cytochrome bo(3) ubiquinol terminal oxidase is the component of the aerobic respiratory chain of E.coli that predominates when cells are grown at high aeration. Has proton pump activity across the membrane in addition to electron transfer, pumping 2 protons/electron. (109 aa) | ||||
cyoC | Cytochrome o ubiquinol oxidase subunit III; Cytochrome bo(3) ubiquinol terminal oxidase is the component of the aerobic respiratory chain of E.coli that predominates when cells are grown at high aeration. Has proton pump activity across the membrane in addition to electron transfer, pumping 2 protons/electron. (204 aa) | ||||
cyoB | Cytochrome o ubiquinol oxidase subunit I; Cytochrome bo(3) ubiquinol terminal oxidase is the component of the aerobic respiratory chain of E.coli that predominates when cells are grown at high aeration. Has proton pump activity across the membrane in addition to electron transfer, pumping 2 protons/electron. Protons are probably pumped via D- and K- channels found in this subunit. (663 aa) | ||||
cyoA | Cytochrome o ubiquinol oxidase subunit II; Cytochrome bo(3) ubiquinol terminal oxidase is the component of the aerobic respiratory chain of E.coli that predominates when cells are grown at high aeration. Has proton pump activity across the membrane in addition to electron transfer, pumping 2 protons/electron. (315 aa) | ||||
fadM | Long-chain acyl-CoA thioesterase III; Long-chain acyl-CoA thioesterase with a preference for 3,5- tetradecadienoyl-CoA. Could be involved in beta-oxidation of fatty acids; Belongs to the 4-hydroxybenzoyl-CoA thioesterase family. (132 aa) | ||||
tesB | acyl-CoA thioesterase 2; Can hydrolyze a broad range of acyl-CoA thioesters. Its physiological function is not known; Belongs to the C/M/P thioester hydrolase family. (286 aa) | ||||
gltA | Citrate synthase; Protein involved in tricarboxylic acid cycle and anaerobic respiration; Belongs to the citrate synthase family. (427 aa) | ||||
sdhC | Succinate dehydrogenase, membrane subunit, binds cytochrome b556; Membrane-anchoring subunit of succinate dehydrogenase (SDH); Belongs to the cytochrome b560 family. (129 aa) | ||||
sdhD | Succinate dehydrogenase, membrane subunit, binds cytochrome b556; Membrane-anchoring subunit of succinate dehydrogenase (SDH). (115 aa) | ||||
sdhA | Succinate dehydrogenase, flavoprotein subunit; Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth. (588 aa) | ||||
sdhB | Succinate dehydrogenase, FeS subunit; Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth. (238 aa) | ||||
sucA | 2-oxoglutarate decarboxylase, thiamine triphosphate-binding; E1 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the decarboxylation of 2-oxoglutarate, the first step in the conversion of 2-oxoglutarate to succinyl-CoA and CO(2). (933 aa) | ||||
sucB | Dihydrolipoyltranssuccinase; E2 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the second step in the conversion of 2- oxoglutarate to succinyl-CoA and CO(2). (405 aa) | ||||
sucC | succinyl-CoA synthetase, beta subunit; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The beta subunit provides nucleotide specificity of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A and phosphate are found in the alpha subunit. Can use either ATP or GTP, but prefers ATP. It can also function in the other direction for anabolic purposes, and this may be particularly impor [...] (388 aa) | ||||
sucD | succinyl-CoA synthetase, NAD(P)-binding, alpha subunit; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The alpha subunit of the enzyme binds the substrates coenzyme A and phosphate, while succinate binding and nucleotide specificity is provided by the beta subunit. Can use either ATP or GTP, but prefers ATP. It can also function in the other direction for anabolic purposes, and this may be particularly importan [...] (289 aa) | ||||
cydA | Cytochrome d terminal oxidase, subunit I; A terminal oxidase that produces a proton motive force by the vectorial transfer of protons across the inner membrane. It is the component of the aerobic respiratory chain of E.coli that predominates when cells are grown at low aeration. Generates a proton motive force using protons and electrons from opposite sides of the membrane to generate H(2)O, transferring 1 proton/electron. Belongs to the cytochrome ubiquinol oxidase subunit 1 family. (522 aa) | ||||
cydB | Cytochrome d terminal oxidase, subunit II; A terminal oxidase that produces a proton motive force by the vectorial transfer of protons across the inner membrane. It is the component of the aerobic respiratory chain of E.coli that predominates when cells are grown at low aeration. Generates a proton motive force using protons and electrons from opposite sides of the membrane to generate H(2)O, transferring 1 proton/electron. (379 aa) | ||||
ybgE | Putative inner membrane protein in cydABX-ybgE operon. (97 aa) | ||||
gpmA | Phosphoglyceromutase 1; Catalyzes the interconversion of 2-phosphoglycerate and 3- phosphoglycerate; Belongs to the phosphoglycerate mutase family. BPG- dependent PGAM subfamily. (250 aa) | ||||
pgl | 6-phosphogluconolactonase; Catalyzes the hydrolysis of 6-phosphogluconolactone to 6- phosphogluconate. (331 aa) | ||||
ybhJ | Aconitase family protein; Putative enzyme. (753 aa) | ||||
poxB | Pyruvate dehydrogenase, thiamine triphosphate-binding, FAD-binding; Pyruvate oxidase; Protein involved in carbohydrate catabolic process and pyruvate catabolic process; Belongs to the TPP enzyme family. (572 aa) | ||||
pflA | Pyruvate formate-lyase 1-activating enzyme; Activation of pyruvate formate-lyase 1 under anaerobic conditions by generation of an organic free radical, using S- adenosylmethionine and reduced flavodoxin as cosubstrates to produce 5'-deoxy-adenosine; Belongs to the organic radical-activating enzymes family. (246 aa) | ||||
pflB | Formate acetyltransferase 1; Protein involved in anaerobic respiration and cellular amino acid catabolic process. (760 aa) | ||||
focA | Formate channel; Involved in the bidirectional transport of formate; Belongs to the FNT transporter (TC 2.A.44) family. (285 aa) | ||||
fabA | Beta-hydroxydecanoyl thioester dehydrase; Necessary for the introduction of cis unsaturation into fatty acids. Catalyzes the dehydration of (3R)-3-hydroxydecanoyl-ACP to E- (2)-decenoyl-ACP and then its isomerization to Z-(3)-decenoyl-ACP. Can catalyze the dehydratase reaction for beta-hydroxyacyl-ACPs with saturated chain lengths up to 16:0, being most active on intermediate chain length. Is inactive in the dehydration of long chain unsaturated beta-hydroxyacyl-ACP. (172 aa) | ||||
plsX | Putative phosphate acyltransferase; Catalyzes the reversible formation of acyl-phosphate (acyl- PO(4)) from acyl-[acyl-carrier-protein] (acyl-ACP). This enzyme utilizes acyl-ACP as fatty acyl donor, but not acyl-CoA. (356 aa) | ||||
fabH | 3-oxoacyl-[acyl-carrier-protein] synthase III; Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP. Catalyzes the first condensation reaction which initiates fatty acid synthesis and may therefore play a role in governing the total rate of fatty acid production. Possesses both acetoacetyl-ACP synthase and acetyl transacylase activities. Has some substrate specificity for acetyl-CoA. Its substrate specificity determines the biosynthesis of straight-chain of fatty acids instead of branched-chain; Belongs to the t [...] (317 aa) | ||||
fabD | malonyl-CoA-[acyl-carrier-protein] transacylase; Belongs to the FabD family. (309 aa) | ||||
fabG | 3-oxoacyl-[acyl-carrier-protein] reductase; Catalyzes the NADPH-dependent reduction of beta-ketoacyl-ACP substrates to beta-hydroxyacyl-ACP products, the first reductive step in the elongation cycle of fatty acid biosynthesis. (244 aa) | ||||
acpP | Acyl carrier protein (ACP); Carrier of the growing fatty acid chain in fatty acid biosynthesis; Belongs to the acyl carrier protein (ACP) family. (78 aa) | ||||
fabF | 3-oxoacyl-[acyl-carrier-protein] synthase II; Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP. Has a preference for short chain acid substrates and may function to supply the octanoic substrates for lipoic acid biosynthesis. (413 aa) | ||||
ptsG | Fused glucose-specific PTS enzymes: IIB component/IIC component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II complex composed of PtsG and Crr is involved in glucose transport. Also functions as a chemoreceptor monitoring the environment for changes in sugar concentration and an effector modulating the activity of the transcriptional repressor Mlc. (477 aa) | ||||
ndh | Respiratory NADH dehydrogenase 2/cupric reductase; Transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. Does not couple the redox reaction to proton translocation. (434 aa) | ||||
icd | Isocitrate dehydrogenase, specific for NADP+; Protein involved in tricarboxylic acid cycle and anaerobic respiration; Belongs to the isocitrate and isopropylmalate dehydrogenases family. (416 aa) | ||||
adhE | Acetaldehyde dehydrogenase [acetylating]; This enzyme has three activities: ADH, ACDH, and PFL- deactivase. In aerobic conditions it acts as a hydrogen peroxide scavenger. The PFL deactivase activity catalyzes the quenching of the pyruvate-formate-lyase catalyst in an iron, NAD, and CoA dependent reaction; In the N-terminal section; belongs to the aldehyde dehydrogenase family. (891 aa) | ||||
yciA | acyl-CoA esterase; Catalyzes the hydrolysis of the thioester bond in palmitoyl- CoA and malonyl-CoA. (132 aa) | ||||
yciB | IspA family inner membrane protein; Involved in cell division; probably involved in intracellular septation; Belongs to the YciB family. (179 aa) | ||||
yciC | UPF0259 family inner membrane protein. (247 aa) | ||||
acnA | Aconitate hydratase 1; Catalyzes the reversible isomerization of citrate to isocitrate via cis-aconitate. The apo form of AcnA functions as a RNA- binding regulatory protein which plays a role as a maintenance or survival enzyme during nutritional or oxidative stress. During oxidative stress inactive AcnA apo-enzyme without iron sulfur clusters binds the acnA mRNA 3' UTRs (untranslated regions), stabilizes acnA mRNA and increases AcnA synthesis, thus mediating a post- transcriptional positive autoregulatory switch. AcnA also enhances the stability of the sodA transcript. (891 aa) | ||||
fabI | Enoyl-[acyl-carrier-protein] reductase, NADH-dependent; Catalyzes the reduction of a carbon-carbon double bond in an enoyl moiety that is covalently linked to an acyl carrier protein (ACP). Involved in the elongation cycle of fatty acid which are used in the lipid metabolism and in the biotin biosynthesis. (262 aa) | ||||
pfo | Pyruvate-flavodoxin oxidoreductase; Oxidoreductase required for the transfer of electrons from pyruvate to flavodoxin. (1174 aa) | ||||
ldhA | Fermentative D-lactate dehydrogenase, NAD-dependent; Fermentative lactate dehydrogenase; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (329 aa) | ||||
feaR | Transcriptional activator for tynA and feaB; Positive regulator of tynA/maoA and feaB/padA, the genes for 2-phenylethylamine catabolism. (301 aa) | ||||
feaB | Phenylacetaldehyde dehydrogenase; Acts almost equally well on phenylacetaldehyde, 4- hydroxyphenylacetaldehyde and 3,4-dihydroxyphenylacetaldehyde. (499 aa) | ||||
tynA | Tyramine oxidase, copper-requiring; The enzyme prefers aromatic over aliphatic amines; Belongs to the copper/topaquinone oxidase family. (757 aa) | ||||
paaZ | oxepin-CoA hydrolase and 3-oxo-5,6-dehydrosuberyl-CoA semialdehyde dehydrogenase; Catalyzes the hydrolytic ring cleavage of 2-oxepin-2(3H)- ylideneacetyl-CoA (oxepin-CoA) via the open-chain aldehyde intermediate to yield 3-oxo-5,6-dehydrosuberyl-CoA. The enzyme consists of a C- terminal (R)-specific enoyl-CoA hydratase domain (formerly MaoC) that cleaves the ring and produces the highly reactive 3-oxo-5,6- dehydrosuberyl-CoA semialdehyde and an N-terminal NADP-dependent aldehyde dehydrogenase domain that oxidizes the aldehyde to 3-oxo-5,6- dehydrosuberyl-CoA. Can also use crotonyl-CoA [...] (681 aa) | ||||
paaA | Ring 1,2-phenylacetyl-CoA epoxidase subunit; Component of 1,2-phenylacetyl-CoA epoxidase multicomponent enzyme system which catalyzes the reduction of phenylacetyl-CoA (PA- CoA) to form 1,2-epoxyphenylacetyl-CoA. The subunit A is the catalytic subunit involved in the incorporation of one atom of molecular oxygen into phenylacetyl-CoA. (309 aa) | ||||
paaB | Putative ring 1,2-phenylacetyl-CoA epoxidase subunit; Component of 1,2-phenylacetyl-CoA epoxidase multicomponent enzyme system which catalyzes the reduction of phenylacetyl-CoA (PA- CoA) to form 1,2-epoxyphenylacetyl-CoA. The subunit B may play a regulatory role or be directly involved in electron transport. (95 aa) | ||||
paaC | Ring 1,2-phenylacetyl-CoA epoxidase subunit; Component of 1,2-phenylacetyl-CoA epoxidase multicomponent enzyme system which catalyzes the reduction of phenylacetyl-CoA (PA- CoA) to form 1,2-epoxyphenylacetyl-CoA. The subunit C may be essential for structural integrity of the alpha subunit. (248 aa) | ||||
paaD | Ring 1,2-phenylacetyl-CoA epoxidase subunit; Possible component of 1,2-phenylacetyl-CoA epoxidase multicomponent enzyme system which catalyzes the reduction of phenylacetyl-CoA (PA-CoA) to form 1,2-epoxyphenylacetyl-CoA. The subunit D may have a function related to the maturation of the monooxygenase complex, rather than direct involvement in catalysis. PaaD could assist either in maturation of PaaE or PaaA. (165 aa) | ||||
paaE | Ring 1,2-phenylacetyl-CoA epoxidase, NAD(P)H oxidoreductase component; Component of 1,2-phenylacetyl-CoA epoxidase multicomponent enzyme system which catalyzes the reduction of phenylacetyl-CoA (PA- CoA) to form 1,2-epoxyphenylacetyl-CoA. The subunit E is a reductase with a preference for NADPH and FAD, capable of reducing cytochrome c. (356 aa) | ||||
paaF | 2,3-dehydroadipyl-CoA hydratase; Catalyzes the reversible conversion of enzymatically produced 2,3-dehydroadipyl-CoA into 3-hydroxyadipyl-CoA. Belongs to the enoyl-CoA hydratase/isomerase family. (255 aa) | ||||
paaG | 1,2-epoxyphenylacetyl-CoA isomerase, oxepin-CoA-forming; Catalyzes the reversible conversion of the epoxide to 2- oxepin-2(3H)-ylideneacetyl-CoA (oxepin-CoA). (262 aa) | ||||
paaH | 3-hydroxyadipyl-CoA dehydrogenase, NAD+-dependent; Catalyzes the oxidation of 3-hydroxyadipyl-CoA to yield 3- oxoadipyl-CoA; Belongs to the 3-hydroxyacyl-CoA dehydrogenase family. (475 aa) | ||||
paaI | hydroxyphenylacetyl-CoA thioesterase; Thioesterase with a preference for ring-hydroxylated phenylacetyl-CoA esters. Hydrolyzes 3,4-dihydroxyphenylacetyl-CoA, 3- hydroxyphenylacetyl-CoA and 4-hydroxyphenylacetyl-CoA. Inactive towards 4-hydroxybenzoyl-CoA and 4-hydroxyphenacyl-CoA. Belongs to the thioesterase PaaI family. (140 aa) | ||||
paaJ | 3-oxoadipyl-CoA/3-oxo-5,6-dehydrosuberyl-CoA thiolase; Catalyzes the thiolytic cleavage of the beta-keto C8 intermediate 3-oxo-5,6-dehydrosuberyl-CoA with CoA to yield the C6 intermediate 2,3-dehydroadipyl-CoA and acetyl-CoA. Besides it catalyzes also the last step of the pathway, in which 3-oxoadipyl-CoA similarly is cleaved to acetyl-CoA and succinyl-CoA. Belongs to the thiolase-like superfamily. Thiolase family. (401 aa) | ||||
paaK | phenylacetyl-CoA ligase; Catalyzes the activation of phenylacetic acid (PA) to phenylacetyl-CoA (PA-CoA). (437 aa) | ||||
paaX | Transcriptional repressor of phenylacetic acid degradation paa operon, phenylacetyl-CoA inducer; Negative regulator of the paaZ and paaABCDEFGHIJK catabolic operons. Binds the consensus sequence 5'-WWTRTGATTCGYGWT-3'. Binding of PaaX is specifically inhibited by phenylacetyl-coenzyme A (PA-CoA). (316 aa) | ||||
paaY | Thioesterase required for phenylacetic acid degradation; trimeric; phenylacetate regulatory and detoxification protein; hexapeptide repeat protein. (196 aa) | ||||
maeA | Malate dehydrogenase, decarboxylating, NAD-requiring; NAD-linked malate dehydrogenase (malic enzyme); Protein involved in gluconeogenesis. (565 aa) | ||||
mlc | Glucosamine anaerobic growth regulon transcriptional repressor; Transcriptional repressor that regulates the expression of proteins that are part of the phosphotransferase system for sugar uptake. Regulates the expression of malT. (406 aa) | ||||
fumC | Fumarate hydratase (fumarase C),aerobic Class II; Involved in the TCA cycle. FumC seems to be a backup enzyme for FumA under conditions of iron limitation and oxidative stress. Catalyzes the stereospecific interconversion of fumarate to L-malate. Belongs to the class-II fumarase/aspartase family. Fumarase subfamily. (467 aa) | ||||
fumA | Fumarate hydratase (fumarase A), aerobic Class I; Catalyzes the reversible hydration of fumarate to (S)-malate. Functions as an aerobic enzyme in the direction of malate formation as part of the citric acid cycle. Accounts for about 80% of the fumarase activity when the bacteria grow aerobically. To a lesser extent, also displays D-tartrate dehydratase activity in vitro, but is not able to convert (R)-malate, L-tartrate or meso-tartrate. Can also catalyze the isomerization of enol- to keto-oxaloacetate. (548 aa) | ||||
ydhZ | Uncharacterized protein; In vitro catalyzes the addition of water to fumarate, forming malate. Cannot catalyze the reverse reaction. Cannot use the cis-isomer maleate as substrate. (69 aa) | ||||
pykF | Pyruvate kinase I (formerly F), fructose stimulated; Protein involved in glycolysis, fermentation and anaerobic respiration. (470 aa) | ||||
ydiF | Putative acetyl-CoA:acetoacetyl-CoA transferase: alpha subunit/beta subunit; CoA transferase having broad substrate specificity for short- chain acyl-CoA thioesters with the activity decreasing when the length of the carboxylic acid chain exceeds four carbons. May play a role in short-chain fatty acid metabolism in E.coli (By similarity). Belongs to the 3-oxoacid CoA-transferase family. (531 aa) | ||||
fadK | Short chain acyl-CoA synthetase, anaerobic; Catalyzes the esterification, concomitant with transport, of exogenous fatty acids into metabolically active CoA thioesters for subsequent degradation or incorporation into phospholipids. Is maximally active on C6:0, C8:0 and C12:0 fatty acids, while has a low activity on C14-C18 chain length fatty acids. Is involved in the anaerobic beta-oxidative degradation of fatty acids, which allows anaerobic growth of E.coli on fatty acids as a sole carbon and energy source in the presence of nitrate or fumarate as a terminal electron acceptor. Can fun [...] (548 aa) | ||||
ppsA | Phosphoenolpyruvate synthase; Catalyzes the phosphorylation of pyruvate to phosphoenolpyruvate. (792 aa) | ||||
pfkB | 6-phosphofructokinase II; Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis. (309 aa) | ||||
gapA | Glyceraldehyde-3-phosphate dehydrogenase A; Catalyzes the oxidative phosphorylation of glyceraldehyde 3- phosphate (G3P) to 1,3-bisphosphoglycerate (BPG) using the cofactor NAD. The first reaction step involves the formation of a hemiacetal intermediate between G3P and a cysteine residue, and this hemiacetal intermediate is then oxidized to a thioester, with concomitant reduction of NAD to NADH. The reduced NADH is then exchanged with the second NAD, and the thioester is attacked by a nucleophilic inorganic phosphate to produce BPG. (331 aa) | ||||
yeaD | D-hexose-6-phosphate epimerase-like protein; Belongs to the glucose-6-phosphate 1-epimerase family. (294 aa) | ||||
fadD | acyl-CoA synthetase (long-chain-fatty-acid--CoA ligase); Catalyzes the esterification, concomitant with transport, of exogenous long-chain fatty acids into metabolically active CoA thioesters for subsequent degradation or incorporation into phospholipids. Activity is the highest with fatty acid substrates of > 10 carbon atoms. Is involved in the aerobic beta- oxidative degradation of fatty acids, which allows aerobic growth of E.coli on fatty acids as a sole carbon and energy source. (561 aa) | ||||
eda | KHG/KDPG aldolase; Involved in the degradation of glucose via the Entner- Doudoroff pathway. Catalyzes the reversible, stereospecific retro-aldol cleavage of 2-Keto-3-deoxy-6-phosphogluconate (KDPG) to pyruvate and D- glyceraldehyde-3-phosphate. In the synthetic direction, it catalyzes the addition of pyruvate to electrophilic aldehydes with si-facial selectivity. It accepts some nucleophiles other than pyruvate, including 2-oxobutanoate, phenylpyruvate, and fluorobutanoate. It has a preference for the S-configuration at C2 of the electrophile. (213 aa) | ||||
edd | 6-phosphogluconate dehydratase; Catalyzes the dehydration of 6-phospho-D-gluconate to 2- dehydro-3-deoxy-6-phospho-D-gluconate. (603 aa) | ||||
zwf | Glucose-6-phosphate 1-dehydrogenase; Catalyzes the oxidation of glucose 6-phosphate to 6- phosphogluconolactone; Belongs to the glucose-6-phosphate dehydrogenase family. (491 aa) | ||||
yebK | Putative DNA-binding transcriptional regulator; Represses the expression of the hex regulon (zwf, eda, glp and gap). (289 aa) | ||||
pykA | Pyruvate kinase II, glucose stimulated; Protein involved in glycolysis, fermentation and anaerobic respiration. (480 aa) | ||||
gnd | 6-phosphogluconate dehydrogenase, decarboxylating; Catalyzes the oxidative decarboxylation of 6-phosphogluconate to ribulose 5-phosphate and CO(2), with concomitant reduction of NADP to NADPH. (468 aa) | ||||
fbaB | Fructose-bisphosphate aldolase class I; Protein involved in glycolysis; Belongs to the DeoC/FbaB aldolase family. FbaB subfamily. (350 aa) | ||||
dld | D-lactate dehydrogenase, FAD-binding, NADH independent; Catalyzes the oxidation of D-lactate to pyruvate. Electrons derived from D-lactate oxidation are transferred to the ubiquinone/cytochrome electron transfer chain, where they may be used to provide energy for the active transport of a variety of amino acids and sugars across the membrane. (571 aa) | ||||
galS | Galactose- and fucose-inducible galactose regulon transcriptional isorepressor; Repressor of the mgl operon. Binds galactose and D-fucose as inducers. GalS binds to an operator DNA sequence within its own coding sequence (corresponding to residues 15 to 20). (346 aa) | ||||
yeiI | Putative kinase; Belongs to the carbohydrate kinase PfkB family. (362 aa) | ||||
mqo | Malate dehydrogenase, FAD/NAD(P)-binding domain; Protein involved in tricarboxylic acid cycle. (548 aa) | ||||
atoS | Sensory histidine kinase in two-component regulatory system with AtoC; Member of the two-component regulatory system AtoS/AtoC. In the presence of acetoacetate, AtoS/AtoC stimulates the expression of the atoDAEB operon, leading to short chain fatty acid catabolism and activation of the poly-(R)-3-hydroxybutyrate (cPHB) biosynthetic pathway. Also induces the operon in response to spermidine. Involved in the regulation of motility and chemotaxis, via transcriptional induction of the flagellar regulon. AtoS is a membrane-associated kinase that phosphorylates and activates AtoC in response [...] (608 aa) | ||||
atoC | Regulatory protein AtoC; Member of the two-component regulatory system AtoS/AtoC. In the presence of acetoacetate, AtoS/AtoC stimulates the expression of the atoDAEB operon, leading to short chain fatty acid catabolism and activation of the poly-(R)-3-hydroxybutyrate (cPHB) biosynthetic pathway. Also induces the operon in response to spermidine. Involved in the regulation of motility and chemotaxis, via transcriptional induction of the flagellar regulon. AtoC acts by binding directly to the promoter region of the target genes. In addition to its role as a transcriptional regulator, fun [...] (461 aa) | ||||
atoD | acetyl-CoA:acetoacetyl-CoA transferase alpha subunit; Protein involved in fatty acid oxidation. (220 aa) | ||||
atoA | acetyl-CoA:acetoacetyl-CoA transferase beta subunit; Protein involved in fatty acid oxidation; Belongs to the 3-oxoacid CoA-transferase subunit B family. (216 aa) | ||||
atoE | Short chain fatty acid transporter; May be responsible for the uptake of short-chain fatty acids. (440 aa) | ||||
atoB | acetyl-CoA acetyltransferase; Protein involved in fatty acid oxidation. (394 aa) | ||||
nuoN | NADH:ubiquinone oxidoreductase, membrane subunit N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (485 aa) | ||||
nuoM | NADH:ubiquinone oxidoreductase, membrane subunit M; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4 family. (509 aa) | ||||
nuoL | NADH:ubiquinone oxidoreductase, membrane subunit L; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 5 family. (613 aa) | ||||
nuoK | NADH:ubiquinone oxidoreductase, membrane subunit K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (100 aa) | ||||
nuoJ | NADH:ubiquinone oxidoreductase, membrane subunit J; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 6 family. (184 aa) | ||||
nuoI | NADH:ubiquinone oxidoreductase, chain I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (180 aa) | ||||
nuoH | NADH:ubiquinone oxidoreductase, membrane subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (325 aa) | ||||
nuoG | NADH:ubiquinone oxidoreductase, chain G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (908 aa) | ||||
nuoF | NADH:ubiquinone oxidoreductase, chain F; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (445 aa) | ||||
nuoE | NADH:ubiquinone oxidoreductase, chain E; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (166 aa) | ||||
nuoC | NADH:ubiquinone oxidoreductase, fused CD subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the C-terminal section; belongs to the complex I 49 kDa subunit family. (596 aa) | ||||
nuoB | NADH:ubiquinone oxidoreductase, chain B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (220 aa) | ||||
nuoA | NADH:ubiquinone oxidoreductase, membrane subunit A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. (147 aa) | ||||
ackA | Acetate kinase A and propionate kinase 2; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. During anaerobic growth of the organism, this enzyme is also involved in the synthesis of most of the ATP formed catabolically; Belongs to the acetokinase family. (400 aa) | ||||
pta | Phosphate acetyltransferase; Involved in acetate metabolism. Catalyzes the reversible interconversion of acetyl-CoA and acetyl phosphate. The direction of the overall reaction changes depending on growth conditions. On minimal medium acetyl-CoA is generated. In rich medium acetyl-CoA is converted to acetate and allowing the cell to dump the excess of acetylation potential in exchange for energy in the form of ATP. In the N-terminal section; belongs to the CobB/CobQ family. (714 aa) | ||||
accD | acetyl-CoA carboxylase, beta (carboxyltransferase) subunit; Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA; Belongs to the AccD/PCCB family. (304 aa) | ||||
fabB | 3-oxoacyl-[acyl-carrier-protein] synthase I; Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP. Specific for elongation from C-10 to unsaturated C-16 and C-18 fatty acids; Belongs to the thiolase-like superfamily. Beta-ketoacyl-ACP synthases family. (406 aa) | ||||
fadJ | enoyl-CoA hydratase/epimerase and isomerase/3-hydroxyacyl-CoA dehydrogenase; Catalyzes the formation of a hydroxyacyl-CoA by addition of water on enoyl-CoA. Also exhibits 3-hydroxyacyl-CoA epimerase and 3- hydroxyacyl-CoA dehydrogenase activities. Strongly involved in the anaerobic degradation of long and medium-chain fatty acids in the presence of nitrate and weakly involved in the aerobic degradation of long-chain fatty acids; In the N-terminal section; belongs to the enoyl-CoA hydratase/isomerase family. (714 aa) | ||||
fadI | beta-ketoacyl-CoA thiolase, anaerobic, subunit; Catalyzes the final step of fatty acid oxidation in which acetyl-CoA is released and the CoA ester of a fatty acid two carbons shorter is formed. Strongly involved in the anaerobic degradation of long and medium-chain fatty acids in the presence of nitrate and weakly involved in the aerobic degradation of long-chain fatty acids. Belongs to the thiolase-like superfamily. Thiolase family. (436 aa) | ||||
fadL | Long-chain fatty acid outer membrane transporter; Involved in translocation of long-chain fatty acids across the outer membrane. It is a receptor for the bacteriophage T2. FadL may form a specific channel; Belongs to the OmpP1/FadL family. (446 aa) | ||||
glk | Glucokinase; Not highly important in E.coli as glucose is transported into the cell by the PTS system already as glucose 6-phosphate. (321 aa) | ||||
ptsH | Phosphohistidinoprotein-hexose phosphotransferase component of PTS system (Hpr); General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The phosphoryl group from phosphoenolpyruvate (PEP) is transferred to the phosphoryl carrier protein HPr by enzyme I. Phospho-HPr then transfers it to the PTS EIIA domain. (85 aa) | ||||
ptsI | PEP-protein phosphotransferase of PTS system (enzyme I); General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. Enzyme I transfers the phosphoryl group from phosphoenolpyruvate (PEP) to the phosphoryl carrier protein (HPr). Can also use (Z)-3-fluoro-PEP (ZFPEP), (Z)-3-methyl- PEP (ZMePEP), (Z)-3-chloro-PEP (ZClPEP) and (E)-3-chloro-PEP (EClPEP) as alte [...] (575 aa) | ||||
crr | Glucose-specific enzyme IIA component of PTS; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II complex composed of PtsG and Crr is involved in glucose transport. The non-phosphorylated EIII-Glc is an inhibitor for uptake of certain sugars such as maltose, melibiose, lactose, and glycerol. Phosphorylated EIII-Glc, however, may be an activator for adenylate cyclase. It is an im [...] (169 aa) | ||||
eutD | Phosphate acetyltransferase; Ethanolamine utilization; homolog of Salmonella acetyl/butyryl P transferase; Protein involved in amine catabolic process. (338 aa) | ||||
maeB | Malic enzyme: putative oxidoreductase/phosphotransacetylase; Putative multimodular enzyme; In the N-terminal section; belongs to the malic enzymes family. (759 aa) | ||||
talA | Transaldolase A; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway. (316 aa) | ||||
tktB | Transketolase 2, thiamine triphosphate-binding; Catalyzes the reversible transfer of a two-carbon ketol group from sedoheptulose-7-phosphate to glyceraldehyde-3-phosphate, producing xylulose-5-phosphate and ribose-5-phosphate. Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate (By similarity). (667 aa) | ||||
hyfH | Hydrogenase 4, Fe-S subunit; Probable electron transfer protein for hydrogenase 4. (181 aa) | ||||
yfhL | Putative 4Fe-4S cluster-containing protein; Ferredoxins are iron-sulfur proteins that transfer electrons in a wide variety of metabolic reactions. (86 aa) | ||||
acpS | Holo-[acyl-carrier-protein] synthase 1; Transfers the 4'-phosphopantetheine moiety from coenzyme A to the 'Ser-36' of acyl-carrier-protein; Belongs to the P-Pant transferase superfamily. AcpS family. (126 aa) | ||||
grcA | Autonomous glycyl radical cofactor; Acts as a radical domain for damaged PFL and possibly other radical proteins. (127 aa) | ||||
eno | Enolase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis. It is also a component of the RNA degradosome, a multi-enzyme complex involved in RNA processing and messenger RNA degradation. Its interaction with RNase E is important for the turnover of mRNA, in particular on transcripts encoding enzymes of energy-generating metabolic routes. Its presence in the degradosome is required for the response to excess phosphosugar. May play a regulatory role in the degradation of specific RNAs, [...] (432 aa) | ||||
galR | Galactose-inducible d-galactose regulon transcriptional repressor; Repressor of the galactose operon. Binds galactose as an inducer. (343 aa) | ||||
yqeF | Short chain acyltransferase; Putative acyltransferase; Belongs to the thiolase-like superfamily. Thiolase family. (393 aa) | ||||
rpiA | Ribose 5-phosphate isomerase, constitutive; Involved in the first step of the non-oxidative branch of the pentose phosphate pathway. It catalyzes the reversible conversion of ribose-5-phosphate to ribulose 5-phosphate. Can also act on D-ribose-5- diphosphate and D-ribose-5-triphosphate as substrate. (219 aa) | ||||
scpA | methylmalonyl-CoA mutase; Catalyzes the interconversion of succinyl-CoA and methylmalonyl-CoA. Could be part of a pathway that converts succinate to propionate. (714 aa) | ||||
argK | Membrane ATPase/protein kinase; Binds and hydrolyzes GTP. Likely functions as a G-protein chaperone that assists AdoCbl cofactor delivery to the methylmalonyl-CoA mutase (MCM) ScpA and reactivation of the enzyme during catalysis; Belongs to the SIMIBI class G3E GTPase family. ArgK/MeaB subfamily. (331 aa) | ||||
scpB | methylmalonyl-CoA decarboxylase, biotin-independent; Catalyzes the decarboxylation of (R)-methylmalonyl-CoA to propionyl-CoA. Could be part of a pathway that converts succinate to propanoate. (261 aa) | ||||
scpC | propionyl-CoA:succinate CoA transferase; Catalyzes the transfer of coenzyme A from propionyl-CoA to succinate. Could be part of a pathway that converts succinate to propionate; Belongs to the acetyl-CoA hydrolase/transferase family. (492 aa) | ||||
fbaA | Fructose-bisphosphate aldolase, class II; Catalyzes the aldol condensation of dihydroxyacetone phosphate (DHAP or glycerone-phosphate) with glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP) in gluconeogenesis and the reverse reaction in glycolysis. (359 aa) | ||||
pgk | Phosphoglycerate kinase; Protein involved in glycolysis and gluconeogenesis; Belongs to the phosphoglycerate kinase family. (387 aa) | ||||
yggD | MtlR family putative transcriptional repressor; In vitro catalyzes the addition of water to fumarate, forming malate. Cannot catalyze the reverse reaction. Cannot use the cis-isomer maleate as substrate; Belongs to the MtlR/FumE family. (169 aa) | ||||
yggF | Fructose 1,6 bisphosphatase isozyme; Catalyzes the hydrolysis of fructose 1,6-bisphosphate to fructose 6-phosphate. Also displays a low activity toward glucose 1,6- bisphosphate, and no activity against ribulose 1,5-bisphosphate, fructose 2,6-bisphosphate, or fructose 1-phosphate. (321 aa) | ||||
tktA | Transketolase 1, thiamine triphosphate-binding; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate. Thus, catalyzes the reversible transfer of a two-carbon ketol group from sedoheptulose-7-phosphate to glyceraldehyde-3-phosphate, producing xylulose-5-phosphate and ribose- 5-phosphate. (663 aa) | ||||
galP | D-galactose transporter; Uptake of galactose across the boundary membrane with the concomitant transport of protons into the cell (symport system); Belongs to the major facilitator superfamily. Sugar transporter (TC 2.A.1.1) family. (464 aa) | ||||
fadH | 2,4-dienoyl-CoA reductase, NADH and FMN-linked; Functions as an auxiliary enzyme in the beta-oxidation of unsaturated fatty acids with double bonds at even carbon positions. Catalyzes the NADPH-dependent reduction of the C4-C5 double bond of the acyl chain of 2,4-dienoyl-CoA to yield 2-trans-enoyl-CoA. Acts on both isomers, 2-trans,4- cis- and 2-trans,4-trans-decadienoyl-CoA, with almost equal efficiency. Is not active with NADH instead of NADPH. Does not show cis->trans isomerase activity. (672 aa) | ||||
yhaL | Uncharacterized protein. (54 aa) | ||||
tdcE | Pyruvate formate-lyase 4/2-ketobutyrate formate-lyase; Catalyzes the cleavage of 2-ketobutyrate to propionyl-CoA and formate. It can also use pyruvate as substrate. Belongs to the glycyl radical enzyme (GRE) family. PFL subfamily. (764 aa) | ||||
tdcD | Propionate kinase/acetate kinase C, anaerobic; Catalyzes the conversion of propionyl phosphate and ADP to propionate and ATP. It can also use acetyl phosphate as phosphate group acceptor; Belongs to the acetokinase family. TdcD subfamily. (402 aa) | ||||
garK | Glycerate kinase I; Protein involved in carbohydrate catabolic process; Belongs to the glycerate kinase type-1 family. (381 aa) | ||||
yraR | Putative nucleoside-diphosphate-sugar epimerase; To yeast YER004W. (211 aa) | ||||
mdh | Malate dehydrogenase, NAD(P)-binding; Catalyzes the reversible oxidation of malate to oxaloacetate. (312 aa) | ||||
acuI | Putative acryloyl-CoA reductase; Probably catalyzes the NADPH-dependent reduction of acrylyl- CoA to propanoyl-CoA; Belongs to the zinc-containing alcohol dehydrogenase family. Acrylyl-CoA reductase subfamily. (324 aa) | ||||
accB | Biotin carboxyl carrier protein of acetyl-CoA carboxylase; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (156 aa) | ||||
accC | acetyl-CoA carboxylase, biotin carboxylase subunit; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (449 aa) | ||||
crp | cAMP-activated global transcription factor, mediator of catabolite repression; A global transcription regulator. Complexes with cyclic AMP (cAMP) which allosterically activates DNA binding (to consensus sequence 5'-AAATGTGATCTAGATCACATTT-3') to directly regulate the transcription of about 300 genes in about 200 operons and indirectly regulate the expression of about half the genome. There are 3 classes of CRP promoters; class I promoters have a single CRP-binding site upstream of the RNA polymerase (RNAP)-binding site, whereas in class II promoters the single CRP- and RNAP-binding site [...] (210 aa) | ||||
rpe | D-ribulose-5-phosphate 3-epimerase; Catalyzes the reversible epimerization of D-ribulose 5- phosphate to D-xylulose 5-phosphate. (225 aa) | ||||
pck | Phosphoenolpyruvate carboxykinase [ATP]; Involved in the gluconeogenesis. Catalyzes the conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP) through direct phosphoryl transfer between the nucleoside triphosphate and OAA. Belongs to the phosphoenolpyruvate carboxykinase (ATP) family. (540 aa) | ||||
kdgK | 2-dehydro-3-deoxygluconokinase; Catalyzes the phosphorylation of 2-keto-3-deoxygluconate (KDG) to produce 2-keto-3-deoxy-6-phosphogluconate (KDPG). Belongs to the carbohydrate kinase PfkB family. (309 aa) | ||||
yhjJ | Putative periplasmic M16 family chaperone; Belongs to the peptidase M16 family. (498 aa) | ||||
gpmM | Phosphoglycero mutase III, cofactor-independent; Catalyzes the interconversion of 2-phosphoglycerate (2-PGA) and 3-phosphoglycerate (3-PGA). (514 aa) | ||||
cyaA | Adenylate cyclase; Catalyzes the formation of the second messenger cAMP from ATP. Its transcript is probably degraded by endoribonuclease LS (rnlA), decreasing cAMP levels and the negative regulator Crp-cAMP, which then induces its own transcription again. (848 aa) | ||||
fadA | 3-ketoacyl-CoA thiolase (thiolase I); Catalyzes the final step of fatty acid oxidation in which acetyl-CoA is released and the CoA ester of a fatty acid two carbons shorter is formed. Involved in the aerobic and anaerobic degradation of long-chain fatty acids. (387 aa) | ||||
fadB | Enoyl-CoA hydratase/Delta(3)-cis-Delta(2)-trans-enoyl-CoA isomerase/3-hydroxybutyryl-CoA epimerase; Involved in the aerobic and anaerobic degradation of long- chain fatty acids via beta-oxidation cycle. Catalyzes the formation of 3-oxoacyl-CoA from enoyl-CoA via L-3-hydroxyacyl-CoA. It can also use D-3-hydroxyacyl-CoA and cis-3-enoyl-CoA as substrate. In the C-terminal section; belongs to the 3-hydroxyacyl-CoA dehydrogenase family. (729 aa) | ||||
pfkA | 6-phosphofructokinase I; Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis; Belongs to the phosphofructokinase type A (PFKA) family. ATP-dependent PFK group I subfamily. Prokaryotic clade 'B1' sub- subfamily. (320 aa) | ||||
tpiA | Triosephosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (255 aa) | ||||
glpX | Fructose 1,6-bisphosphatase II; Catalyzes the hydrolysis of fructose 1,6-bisphosphate to fructose 6-phosphate. Is likely to be involved in gluconeogenesis during growth on glycerol. Also displays a low activity toward glucose 1,6-bisphosphate, and no activity against ribulose 1,5-bisphosphate, fructose 2,6-bisphosphate, or fructose 1-phosphate. (336 aa) | ||||
ppc | Phosphoenolpyruvate carboxylase; Forms oxaloacetate, a four-carbon dicarboxylic acid source for the tricarboxylic acid cycle. (883 aa) | ||||
aceB | Malate synthase A; Protein involved in glyoxylate cycle. (533 aa) | ||||
aceA | Isocitrate lyase; Involved in the metabolic adaptation in response to environmental changes. Catalyzes the reversible formation of succinate and glyoxylate from isocitrate, a key step of the glyoxylate cycle, which operates as an anaplerotic route for replenishing the tricarboxylic acid cycle during growth on fatty acid substrates. (434 aa) | ||||
aceK | Isocitrate dehydrogenase kinase/phosphatase; Bifunctional enzyme which can phosphorylate or dephosphorylate isocitrate dehydrogenase (IDH) on a specific serine residue. This is a regulatory mechanism which enables bacteria to bypass the Krebs cycle via the glyoxylate shunt in response to the source of carbon. When bacteria are grown on glucose, IDH is fully active and unphosphorylated, but when grown on acetate or ethanol, the activity of IDH declines drastically concomitant with its phosphorylation; Belongs to the AceK family. (578 aa) | ||||
iclR | Transcriptional repressor; Regulation of the glyoxylate bypass operon (aceBAK), which encodes isocitrate lyase, malate synthase as well as isocitrate dehydrogenase kinase/phosphorylase. Glyoxylate disrupts the interaction with the promoter by favoring the inactive dimeric form. Pyruvate enhances promoter binding by stabilizing the tetrameric form. (274 aa) | ||||
pgi | Glucosephosphate isomerase; Protein involved in glycolysis and gluconeogenesis; Belongs to the GPI family. (549 aa) | ||||
actP | Acetate transporter; Transports acetate. Also able to transport glycolate. (549 aa) | ||||
yjcH | DUF485 family inner membrane protein. (104 aa) | ||||
acs | acetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. Acs undergoes a two-step reaction. In the first half reaction, Acs combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA. (652 aa) | ||||
rpiB | Ribose 5-phosphate isomerase B/allose 6-phosphate isomerase; Catalyzes the interconversion of ribulose-5-P and ribose-5-P. It probably also has activity on D-allose 6-phosphate. (149 aa) | ||||
frdD | Fumarate reductase (anaerobic), membrane anchor subunit; Seems to be involved in the anchoring of the catalytic components of the fumarate reductase complex to the cytoplasmic membrane; Belongs to the FrdD family. (119 aa) | ||||
frdC | Fumarate reductase (anaerobic), membrane anchor subunit; Seems to be involved in the anchoring of the catalytic components of the fumarate reductase complex to the cytoplasmic membrane. (131 aa) | ||||
frdB | Fumarate reductase (anaerobic), Fe-S subunit; Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth. (244 aa) | ||||
frdA | Anaerobic fumarate reductase catalytic and NAD/flavoprotein subunit; Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth. Belongs to the FAD-dependent oxidoreductase 2 family. FRD/SDH subfamily. (602 aa) | ||||
fbp | Protein involved in gluconeogenesis. (332 aa) | ||||
ytjC | Phosphatase; Phosphoglyceromutase 2; Protein involved in glycolysis and gluconeogenesis; Belongs to the phosphoglycerate mutase family. GpmB subfamily. (215 aa) | ||||
cydX | Cytochrome d (bd-I) ubiquinol oxidase subunit X; Required for correct functioning of cytochrome bd-I oxidase. This protein and AppX may have some functional overlap. (37 aa) | ||||
ynhF | Stress response membrane. (29 aa) |