node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
fdhD | fdhE | b3895 | b3891 | Formate dehydrogenase formation protein; Required for formate dehydrogenase (FDH) activity. Acts as a sulfur carrier protein that transfers sulfur from IscS to the molybdenum cofactor prior to its insertion into FDH. Specifically interacts with IscS and stimulates its cysteine desulfurase activity. Also binds the molybdenum cofactor. Required for activity of formate dehydrogenase N (FDH-N), formate dehydrogenase O (FDH-O) and formate dehydrogenase H (FDH-H). | Formate dehydrogenase formation protein; Necessary for formate dehydrogenase activity. | 0.966 |
fdhD | fdnG | b3895 | b1474 | Formate dehydrogenase formation protein; Required for formate dehydrogenase (FDH) activity. Acts as a sulfur carrier protein that transfers sulfur from IscS to the molybdenum cofactor prior to its insertion into FDH. Specifically interacts with IscS and stimulates its cysteine desulfurase activity. Also binds the molybdenum cofactor. Required for activity of formate dehydrogenase N (FDH-N), formate dehydrogenase O (FDH-O) and formate dehydrogenase H (FDH-H). | Formate dehydrogenase-N, alpha subunit, nitrate-inducible; Formate dehydrogenase allows E.coli to use formate as major electron donor during anaerobic respiration, when nitrate is used as electron acceptor. The alpha subunit FdnG contains the formate oxidation site. Electrons are transferred from formate to menaquinone in the gamma subunit (FdnI), through the 4Fe-4S clusters in the beta subunit (FdnH). Formate dehydrogenase-N is part of a system that generates proton motive force, together with the dissimilatory nitrate reductase (Nar). | 0.890 |
fdhD | fdnH | b3895 | b1475 | Formate dehydrogenase formation protein; Required for formate dehydrogenase (FDH) activity. Acts as a sulfur carrier protein that transfers sulfur from IscS to the molybdenum cofactor prior to its insertion into FDH. Specifically interacts with IscS and stimulates its cysteine desulfurase activity. Also binds the molybdenum cofactor. Required for activity of formate dehydrogenase N (FDH-N), formate dehydrogenase O (FDH-O) and formate dehydrogenase H (FDH-H). | Formate dehydrogenase-N, Fe-S (beta) subunit, nitrate-inducible; Formate dehydrogenase allows E.coli to use formate as major electron donor during anaerobic respiration, when nitrate is used as electron acceptor. The beta subunit FdnH is an electron transfer unit containing 4 iron-sulfur clusters; it serves as a conduit for electrons that are transferred from the formate oxidation site in the alpha subunit (FdnG) to the menaquinone associated with the gamma subunit (FdnI) of formate dehydrogenase-N. Formate dehydrogenase-N is part of a system that generates proton motive force, togethe [...] | 0.621 |
fdhD | fdnI | b3895 | b1476 | Formate dehydrogenase formation protein; Required for formate dehydrogenase (FDH) activity. Acts as a sulfur carrier protein that transfers sulfur from IscS to the molybdenum cofactor prior to its insertion into FDH. Specifically interacts with IscS and stimulates its cysteine desulfurase activity. Also binds the molybdenum cofactor. Required for activity of formate dehydrogenase N (FDH-N), formate dehydrogenase O (FDH-O) and formate dehydrogenase H (FDH-H). | Formate dehydrogenase-N, cytochrome B556 (gamma) subunit, nitrate-inducible; Formate dehydrogenase allows E.coli to use formate as major electron donor during anaerobic respiration, when nitrate is used as electron acceptor. Subunit gamma is the cytochrome b556 component of the formate dehydrogenase-N, and also contains a menaquinone reduction site that receives electrons from the beta subunit (FdnH), through its hemes. Formate dehydrogenase-N is part of a system that generates proton motive force, together with the dissimilatory nitrate reductase (Nar). | 0.667 |
fdhD | fdoG | b3895 | b3894 | Formate dehydrogenase formation protein; Required for formate dehydrogenase (FDH) activity. Acts as a sulfur carrier protein that transfers sulfur from IscS to the molybdenum cofactor prior to its insertion into FDH. Specifically interacts with IscS and stimulates its cysteine desulfurase activity. Also binds the molybdenum cofactor. Required for activity of formate dehydrogenase N (FDH-N), formate dehydrogenase O (FDH-O) and formate dehydrogenase H (FDH-H). | Formate dehydrogenase-O, large subunit; Allows to use formate as major electron donor during aerobic respiration. Subunit alpha possibly forms the active site; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. | 0.931 |
fdhD | fdoH | b3895 | b3893 | Formate dehydrogenase formation protein; Required for formate dehydrogenase (FDH) activity. Acts as a sulfur carrier protein that transfers sulfur from IscS to the molybdenum cofactor prior to its insertion into FDH. Specifically interacts with IscS and stimulates its cysteine desulfurase activity. Also binds the molybdenum cofactor. Required for activity of formate dehydrogenase N (FDH-N), formate dehydrogenase O (FDH-O) and formate dehydrogenase H (FDH-H). | Formate dehydrogenase-O, Fe-S subunit; Allows to use formate as major electron donor during aerobic respiration. The beta chain is an electron transfer unit containing 4 cysteine clusters involved in the formation of iron-sulfur centers. Electrons are transferred from the gamma chain to the molybdenum cofactor of the alpha subunit (By similarity). | 0.891 |
fdhD | fdoI | b3895 | b3892 | Formate dehydrogenase formation protein; Required for formate dehydrogenase (FDH) activity. Acts as a sulfur carrier protein that transfers sulfur from IscS to the molybdenum cofactor prior to its insertion into FDH. Specifically interacts with IscS and stimulates its cysteine desulfurase activity. Also binds the molybdenum cofactor. Required for activity of formate dehydrogenase N (FDH-N), formate dehydrogenase O (FDH-O) and formate dehydrogenase H (FDH-H). | Formate dehydrogenase-O, cytochrome b556 subunit; Allows to use formate as major electron donor during aerobic respiration. Subunit gamma is probably the cytochrome b556(FDO) component of the formate dehydrogenase. | 0.914 |
fdhD | selA | b3895 | b3591 | Formate dehydrogenase formation protein; Required for formate dehydrogenase (FDH) activity. Acts as a sulfur carrier protein that transfers sulfur from IscS to the molybdenum cofactor prior to its insertion into FDH. Specifically interacts with IscS and stimulates its cysteine desulfurase activity. Also binds the molybdenum cofactor. Required for activity of formate dehydrogenase N (FDH-N), formate dehydrogenase O (FDH-O) and formate dehydrogenase H (FDH-H). | Selenocysteine synthase; Converts seryl-tRNA(Sec) to selenocysteinyl-tRNA(Sec) required for selenoprotein biosynthesis. Requires selenophosphate as the selenium-donor molecule; Belongs to the SelA family. | 0.687 |
fdhD | selB | b3895 | b3590 | Formate dehydrogenase formation protein; Required for formate dehydrogenase (FDH) activity. Acts as a sulfur carrier protein that transfers sulfur from IscS to the molybdenum cofactor prior to its insertion into FDH. Specifically interacts with IscS and stimulates its cysteine desulfurase activity. Also binds the molybdenum cofactor. Required for activity of formate dehydrogenase N (FDH-N), formate dehydrogenase O (FDH-O) and formate dehydrogenase H (FDH-H). | selenocysteinyl-tRNA-specific translation factor; Translation factor necessary for the incorporation of selenocysteine into proteins. It probably replaces EF-Tu for the insertion of selenocysteine directed by the UGA codon. SelB binds GTP and GDP; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. SelB subfamily. | 0.604 |
fdhD | selD | b3895 | b1764 | Formate dehydrogenase formation protein; Required for formate dehydrogenase (FDH) activity. Acts as a sulfur carrier protein that transfers sulfur from IscS to the molybdenum cofactor prior to its insertion into FDH. Specifically interacts with IscS and stimulates its cysteine desulfurase activity. Also binds the molybdenum cofactor. Required for activity of formate dehydrogenase N (FDH-N), formate dehydrogenase O (FDH-O) and formate dehydrogenase H (FDH-H). | Selenophosphate synthase; Synthesizes selenophosphate from selenide and ATP; Belongs to the selenophosphate synthase 1 family. Class I subfamily. | 0.545 |
fdhE | fdhD | b3891 | b3895 | Formate dehydrogenase formation protein; Necessary for formate dehydrogenase activity. | Formate dehydrogenase formation protein; Required for formate dehydrogenase (FDH) activity. Acts as a sulfur carrier protein that transfers sulfur from IscS to the molybdenum cofactor prior to its insertion into FDH. Specifically interacts with IscS and stimulates its cysteine desulfurase activity. Also binds the molybdenum cofactor. Required for activity of formate dehydrogenase N (FDH-N), formate dehydrogenase O (FDH-O) and formate dehydrogenase H (FDH-H). | 0.966 |
fdhE | fdnG | b3891 | b1474 | Formate dehydrogenase formation protein; Necessary for formate dehydrogenase activity. | Formate dehydrogenase-N, alpha subunit, nitrate-inducible; Formate dehydrogenase allows E.coli to use formate as major electron donor during anaerobic respiration, when nitrate is used as electron acceptor. The alpha subunit FdnG contains the formate oxidation site. Electrons are transferred from formate to menaquinone in the gamma subunit (FdnI), through the 4Fe-4S clusters in the beta subunit (FdnH). Formate dehydrogenase-N is part of a system that generates proton motive force, together with the dissimilatory nitrate reductase (Nar). | 0.992 |
fdhE | fdnH | b3891 | b1475 | Formate dehydrogenase formation protein; Necessary for formate dehydrogenase activity. | Formate dehydrogenase-N, Fe-S (beta) subunit, nitrate-inducible; Formate dehydrogenase allows E.coli to use formate as major electron donor during anaerobic respiration, when nitrate is used as electron acceptor. The beta subunit FdnH is an electron transfer unit containing 4 iron-sulfur clusters; it serves as a conduit for electrons that are transferred from the formate oxidation site in the alpha subunit (FdnG) to the menaquinone associated with the gamma subunit (FdnI) of formate dehydrogenase-N. Formate dehydrogenase-N is part of a system that generates proton motive force, togethe [...] | 0.942 |
fdhE | fdnI | b3891 | b1476 | Formate dehydrogenase formation protein; Necessary for formate dehydrogenase activity. | Formate dehydrogenase-N, cytochrome B556 (gamma) subunit, nitrate-inducible; Formate dehydrogenase allows E.coli to use formate as major electron donor during anaerobic respiration, when nitrate is used as electron acceptor. Subunit gamma is the cytochrome b556 component of the formate dehydrogenase-N, and also contains a menaquinone reduction site that receives electrons from the beta subunit (FdnH), through its hemes. Formate dehydrogenase-N is part of a system that generates proton motive force, together with the dissimilatory nitrate reductase (Nar). | 0.895 |
fdhE | fdoG | b3891 | b3894 | Formate dehydrogenase formation protein; Necessary for formate dehydrogenase activity. | Formate dehydrogenase-O, large subunit; Allows to use formate as major electron donor during aerobic respiration. Subunit alpha possibly forms the active site; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. | 0.998 |
fdhE | fdoH | b3891 | b3893 | Formate dehydrogenase formation protein; Necessary for formate dehydrogenase activity. | Formate dehydrogenase-O, Fe-S subunit; Allows to use formate as major electron donor during aerobic respiration. The beta chain is an electron transfer unit containing 4 cysteine clusters involved in the formation of iron-sulfur centers. Electrons are transferred from the gamma chain to the molybdenum cofactor of the alpha subunit (By similarity). | 0.981 |
fdhE | fdoI | b3891 | b3892 | Formate dehydrogenase formation protein; Necessary for formate dehydrogenase activity. | Formate dehydrogenase-O, cytochrome b556 subunit; Allows to use formate as major electron donor during aerobic respiration. Subunit gamma is probably the cytochrome b556(FDO) component of the formate dehydrogenase. | 0.992 |
fdhE | selA | b3891 | b3591 | Formate dehydrogenase formation protein; Necessary for formate dehydrogenase activity. | Selenocysteine synthase; Converts seryl-tRNA(Sec) to selenocysteinyl-tRNA(Sec) required for selenoprotein biosynthesis. Requires selenophosphate as the selenium-donor molecule; Belongs to the SelA family. | 0.866 |
fdhE | selB | b3891 | b3590 | Formate dehydrogenase formation protein; Necessary for formate dehydrogenase activity. | selenocysteinyl-tRNA-specific translation factor; Translation factor necessary for the incorporation of selenocysteine into proteins. It probably replaces EF-Tu for the insertion of selenocysteine directed by the UGA codon. SelB binds GTP and GDP; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. SelB subfamily. | 0.860 |
fdhE | selD | b3891 | b1764 | Formate dehydrogenase formation protein; Necessary for formate dehydrogenase activity. | Selenophosphate synthase; Synthesizes selenophosphate from selenide and ATP; Belongs to the selenophosphate synthase 1 family. Class I subfamily. | 0.641 |