node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
rutA | rutB | b1012 | b1011 | Pyrimidine oxygenase, FMN-dependent; Catalyzes the pyrimidine ring opening between N-3 and C-4 by an unusual flavin hydroperoxide-catalyzed mechanism to yield ureidoacrylate peracid. It cleaves pyrmidine rings directly by adding oxygen atoms, making a toxic ureidoacrylate peracid product which can be spontaneously reduced to ureidoacrylate. Requires the flavin reductase RutF to regenerate FMN in vivo. RutF can be substituted by Fre in vitro; Belongs to the NtaA/SnaA/SoxA(DszA) monooxygenase family. RutA subfamily. | Ureidoacrylate amidohydrolase; In vivo, quickly hydrolyzes the ureidoacrylate peracid to avoid toxicity, but can also hydrolyzes ureidoacrylate that is formed spontaneously from ureidoacrylate peracid. One of the products of hydrolysis, carbamate, hydrolyzes spontaneously, thereby releasing one of the pyrimidine rings nitrogen atoms as ammonia and one of its carbons as CO2. | 0.999 |
rutA | rutC | b1012 | b1010 | Pyrimidine oxygenase, FMN-dependent; Catalyzes the pyrimidine ring opening between N-3 and C-4 by an unusual flavin hydroperoxide-catalyzed mechanism to yield ureidoacrylate peracid. It cleaves pyrmidine rings directly by adding oxygen atoms, making a toxic ureidoacrylate peracid product which can be spontaneously reduced to ureidoacrylate. Requires the flavin reductase RutF to regenerate FMN in vivo. RutF can be substituted by Fre in vitro; Belongs to the NtaA/SnaA/SoxA(DszA) monooxygenase family. RutA subfamily. | Putative aminoacrylate deaminase, reactive intermediate detoxification; May reduce aminoacrylate peracid to aminoacrylate. Required to remove a toxic intermediate produce in vivo, but not in vitro in the pyrimidine nitrogen degradation. | 0.991 |
rutA | rutD | b1012 | b1009 | Pyrimidine oxygenase, FMN-dependent; Catalyzes the pyrimidine ring opening between N-3 and C-4 by an unusual flavin hydroperoxide-catalyzed mechanism to yield ureidoacrylate peracid. It cleaves pyrmidine rings directly by adding oxygen atoms, making a toxic ureidoacrylate peracid product which can be spontaneously reduced to ureidoacrylate. Requires the flavin reductase RutF to regenerate FMN in vivo. RutF can be substituted by Fre in vitro; Belongs to the NtaA/SnaA/SoxA(DszA) monooxygenase family. RutA subfamily. | Putative reactive intermediate detoxifying aminoacrylate hydrolase; May increase the rate of spontaneous hydrolysis of aminoacrylate to malonic semialdehyde. Required to remove a toxic intermediate produce in vivo, but not in vitro in the pyrimidine nitrogen degradation. | 0.985 |
rutA | rutE | b1012 | b1008 | Pyrimidine oxygenase, FMN-dependent; Catalyzes the pyrimidine ring opening between N-3 and C-4 by an unusual flavin hydroperoxide-catalyzed mechanism to yield ureidoacrylate peracid. It cleaves pyrmidine rings directly by adding oxygen atoms, making a toxic ureidoacrylate peracid product which can be spontaneously reduced to ureidoacrylate. Requires the flavin reductase RutF to regenerate FMN in vivo. RutF can be substituted by Fre in vitro; Belongs to the NtaA/SnaA/SoxA(DszA) monooxygenase family. RutA subfamily. | Putative malonic semialdehyde reductase; May reduce toxic product malonic semialdehyde to 3- hydroxypropionic acid, which is excreted. RutE is apparently supplemented by YdfG. Required in vivo, but not in vitro in pyrimidine nitrogen degradation; Belongs to the nitroreductase family. HadB/RutE subfamily. | 0.992 |
rutA | rutF | b1012 | b1007 | Pyrimidine oxygenase, FMN-dependent; Catalyzes the pyrimidine ring opening between N-3 and C-4 by an unusual flavin hydroperoxide-catalyzed mechanism to yield ureidoacrylate peracid. It cleaves pyrmidine rings directly by adding oxygen atoms, making a toxic ureidoacrylate peracid product which can be spontaneously reduced to ureidoacrylate. Requires the flavin reductase RutF to regenerate FMN in vivo. RutF can be substituted by Fre in vitro; Belongs to the NtaA/SnaA/SoxA(DszA) monooxygenase family. RutA subfamily. | flavin:NADH reductase; Catalyzes the reduction of FMN to FMNH2 which is used to reduce pyrimidine by RutA via the Rut pathway. In vitro, the flavin reductase Fre can substitute for the function of RutF, however, RutF is required for uracil utilization in vivo. | 0.999 |
rutB | rutA | b1011 | b1012 | Ureidoacrylate amidohydrolase; In vivo, quickly hydrolyzes the ureidoacrylate peracid to avoid toxicity, but can also hydrolyzes ureidoacrylate that is formed spontaneously from ureidoacrylate peracid. One of the products of hydrolysis, carbamate, hydrolyzes spontaneously, thereby releasing one of the pyrimidine rings nitrogen atoms as ammonia and one of its carbons as CO2. | Pyrimidine oxygenase, FMN-dependent; Catalyzes the pyrimidine ring opening between N-3 and C-4 by an unusual flavin hydroperoxide-catalyzed mechanism to yield ureidoacrylate peracid. It cleaves pyrmidine rings directly by adding oxygen atoms, making a toxic ureidoacrylate peracid product which can be spontaneously reduced to ureidoacrylate. Requires the flavin reductase RutF to regenerate FMN in vivo. RutF can be substituted by Fre in vitro; Belongs to the NtaA/SnaA/SoxA(DszA) monooxygenase family. RutA subfamily. | 0.999 |
rutB | rutC | b1011 | b1010 | Ureidoacrylate amidohydrolase; In vivo, quickly hydrolyzes the ureidoacrylate peracid to avoid toxicity, but can also hydrolyzes ureidoacrylate that is formed spontaneously from ureidoacrylate peracid. One of the products of hydrolysis, carbamate, hydrolyzes spontaneously, thereby releasing one of the pyrimidine rings nitrogen atoms as ammonia and one of its carbons as CO2. | Putative aminoacrylate deaminase, reactive intermediate detoxification; May reduce aminoacrylate peracid to aminoacrylate. Required to remove a toxic intermediate produce in vivo, but not in vitro in the pyrimidine nitrogen degradation. | 0.999 |
rutB | rutD | b1011 | b1009 | Ureidoacrylate amidohydrolase; In vivo, quickly hydrolyzes the ureidoacrylate peracid to avoid toxicity, but can also hydrolyzes ureidoacrylate that is formed spontaneously from ureidoacrylate peracid. One of the products of hydrolysis, carbamate, hydrolyzes spontaneously, thereby releasing one of the pyrimidine rings nitrogen atoms as ammonia and one of its carbons as CO2. | Putative reactive intermediate detoxifying aminoacrylate hydrolase; May increase the rate of spontaneous hydrolysis of aminoacrylate to malonic semialdehyde. Required to remove a toxic intermediate produce in vivo, but not in vitro in the pyrimidine nitrogen degradation. | 0.999 |
rutB | rutE | b1011 | b1008 | Ureidoacrylate amidohydrolase; In vivo, quickly hydrolyzes the ureidoacrylate peracid to avoid toxicity, but can also hydrolyzes ureidoacrylate that is formed spontaneously from ureidoacrylate peracid. One of the products of hydrolysis, carbamate, hydrolyzes spontaneously, thereby releasing one of the pyrimidine rings nitrogen atoms as ammonia and one of its carbons as CO2. | Putative malonic semialdehyde reductase; May reduce toxic product malonic semialdehyde to 3- hydroxypropionic acid, which is excreted. RutE is apparently supplemented by YdfG. Required in vivo, but not in vitro in pyrimidine nitrogen degradation; Belongs to the nitroreductase family. HadB/RutE subfamily. | 0.997 |
rutB | rutF | b1011 | b1007 | Ureidoacrylate amidohydrolase; In vivo, quickly hydrolyzes the ureidoacrylate peracid to avoid toxicity, but can also hydrolyzes ureidoacrylate that is formed spontaneously from ureidoacrylate peracid. One of the products of hydrolysis, carbamate, hydrolyzes spontaneously, thereby releasing one of the pyrimidine rings nitrogen atoms as ammonia and one of its carbons as CO2. | flavin:NADH reductase; Catalyzes the reduction of FMN to FMNH2 which is used to reduce pyrimidine by RutA via the Rut pathway. In vitro, the flavin reductase Fre can substitute for the function of RutF, however, RutF is required for uracil utilization in vivo. | 0.999 |
rutC | rutA | b1010 | b1012 | Putative aminoacrylate deaminase, reactive intermediate detoxification; May reduce aminoacrylate peracid to aminoacrylate. Required to remove a toxic intermediate produce in vivo, but not in vitro in the pyrimidine nitrogen degradation. | Pyrimidine oxygenase, FMN-dependent; Catalyzes the pyrimidine ring opening between N-3 and C-4 by an unusual flavin hydroperoxide-catalyzed mechanism to yield ureidoacrylate peracid. It cleaves pyrmidine rings directly by adding oxygen atoms, making a toxic ureidoacrylate peracid product which can be spontaneously reduced to ureidoacrylate. Requires the flavin reductase RutF to regenerate FMN in vivo. RutF can be substituted by Fre in vitro; Belongs to the NtaA/SnaA/SoxA(DszA) monooxygenase family. RutA subfamily. | 0.991 |
rutC | rutB | b1010 | b1011 | Putative aminoacrylate deaminase, reactive intermediate detoxification; May reduce aminoacrylate peracid to aminoacrylate. Required to remove a toxic intermediate produce in vivo, but not in vitro in the pyrimidine nitrogen degradation. | Ureidoacrylate amidohydrolase; In vivo, quickly hydrolyzes the ureidoacrylate peracid to avoid toxicity, but can also hydrolyzes ureidoacrylate that is formed spontaneously from ureidoacrylate peracid. One of the products of hydrolysis, carbamate, hydrolyzes spontaneously, thereby releasing one of the pyrimidine rings nitrogen atoms as ammonia and one of its carbons as CO2. | 0.999 |
rutC | rutD | b1010 | b1009 | Putative aminoacrylate deaminase, reactive intermediate detoxification; May reduce aminoacrylate peracid to aminoacrylate. Required to remove a toxic intermediate produce in vivo, but not in vitro in the pyrimidine nitrogen degradation. | Putative reactive intermediate detoxifying aminoacrylate hydrolase; May increase the rate of spontaneous hydrolysis of aminoacrylate to malonic semialdehyde. Required to remove a toxic intermediate produce in vivo, but not in vitro in the pyrimidine nitrogen degradation. | 0.999 |
rutC | rutE | b1010 | b1008 | Putative aminoacrylate deaminase, reactive intermediate detoxification; May reduce aminoacrylate peracid to aminoacrylate. Required to remove a toxic intermediate produce in vivo, but not in vitro in the pyrimidine nitrogen degradation. | Putative malonic semialdehyde reductase; May reduce toxic product malonic semialdehyde to 3- hydroxypropionic acid, which is excreted. RutE is apparently supplemented by YdfG. Required in vivo, but not in vitro in pyrimidine nitrogen degradation; Belongs to the nitroreductase family. HadB/RutE subfamily. | 0.995 |
rutC | rutF | b1010 | b1007 | Putative aminoacrylate deaminase, reactive intermediate detoxification; May reduce aminoacrylate peracid to aminoacrylate. Required to remove a toxic intermediate produce in vivo, but not in vitro in the pyrimidine nitrogen degradation. | flavin:NADH reductase; Catalyzes the reduction of FMN to FMNH2 which is used to reduce pyrimidine by RutA via the Rut pathway. In vitro, the flavin reductase Fre can substitute for the function of RutF, however, RutF is required for uracil utilization in vivo. | 0.985 |
rutD | rutA | b1009 | b1012 | Putative reactive intermediate detoxifying aminoacrylate hydrolase; May increase the rate of spontaneous hydrolysis of aminoacrylate to malonic semialdehyde. Required to remove a toxic intermediate produce in vivo, but not in vitro in the pyrimidine nitrogen degradation. | Pyrimidine oxygenase, FMN-dependent; Catalyzes the pyrimidine ring opening between N-3 and C-4 by an unusual flavin hydroperoxide-catalyzed mechanism to yield ureidoacrylate peracid. It cleaves pyrmidine rings directly by adding oxygen atoms, making a toxic ureidoacrylate peracid product which can be spontaneously reduced to ureidoacrylate. Requires the flavin reductase RutF to regenerate FMN in vivo. RutF can be substituted by Fre in vitro; Belongs to the NtaA/SnaA/SoxA(DszA) monooxygenase family. RutA subfamily. | 0.985 |
rutD | rutB | b1009 | b1011 | Putative reactive intermediate detoxifying aminoacrylate hydrolase; May increase the rate of spontaneous hydrolysis of aminoacrylate to malonic semialdehyde. Required to remove a toxic intermediate produce in vivo, but not in vitro in the pyrimidine nitrogen degradation. | Ureidoacrylate amidohydrolase; In vivo, quickly hydrolyzes the ureidoacrylate peracid to avoid toxicity, but can also hydrolyzes ureidoacrylate that is formed spontaneously from ureidoacrylate peracid. One of the products of hydrolysis, carbamate, hydrolyzes spontaneously, thereby releasing one of the pyrimidine rings nitrogen atoms as ammonia and one of its carbons as CO2. | 0.999 |
rutD | rutC | b1009 | b1010 | Putative reactive intermediate detoxifying aminoacrylate hydrolase; May increase the rate of spontaneous hydrolysis of aminoacrylate to malonic semialdehyde. Required to remove a toxic intermediate produce in vivo, but not in vitro in the pyrimidine nitrogen degradation. | Putative aminoacrylate deaminase, reactive intermediate detoxification; May reduce aminoacrylate peracid to aminoacrylate. Required to remove a toxic intermediate produce in vivo, but not in vitro in the pyrimidine nitrogen degradation. | 0.999 |
rutD | rutE | b1009 | b1008 | Putative reactive intermediate detoxifying aminoacrylate hydrolase; May increase the rate of spontaneous hydrolysis of aminoacrylate to malonic semialdehyde. Required to remove a toxic intermediate produce in vivo, but not in vitro in the pyrimidine nitrogen degradation. | Putative malonic semialdehyde reductase; May reduce toxic product malonic semialdehyde to 3- hydroxypropionic acid, which is excreted. RutE is apparently supplemented by YdfG. Required in vivo, but not in vitro in pyrimidine nitrogen degradation; Belongs to the nitroreductase family. HadB/RutE subfamily. | 0.999 |
rutD | rutF | b1009 | b1007 | Putative reactive intermediate detoxifying aminoacrylate hydrolase; May increase the rate of spontaneous hydrolysis of aminoacrylate to malonic semialdehyde. Required to remove a toxic intermediate produce in vivo, but not in vitro in the pyrimidine nitrogen degradation. | flavin:NADH reductase; Catalyzes the reduction of FMN to FMNH2 which is used to reduce pyrimidine by RutA via the Rut pathway. In vitro, the flavin reductase Fre can substitute for the function of RutF, however, RutF is required for uracil utilization in vivo. | 0.992 |