STRINGSTRING
allA allA allE allE allC allC allD allD fdrA fdrA ylbF ylbF ylbE ylbE
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
allAUreidoglycolate lyase, releasing urea; Catalyzes the catabolism of the allantoin degradation intermediate (S)-ureidoglycolate, generating urea and glyoxylate. Involved in the anaerobic utilization of allantoin as sole nitrogen source. Reinforces the induction of genes involved in the degradation of allantoin and glyoxylate by producing glyoxylate. (160 aa)
allES-ureidoglycine aminohydrolase; Involved in the anaerobic nitrogen utilization via the assimilation of allantoin. Catalyzes the second stereospecific hydrolysis reaction (deamination) of the allantoin degradation pathway, producing S-ureidoglycolate and ammonia from S-ureidoglycine. Belongs to the UGHY family. (261 aa)
allCAllantoate amidohydrolase; Involved in the anaerobic nitrogen utilization via the assimilation of allantoin. Catalyzes specifically the hydrolysis of allantoate to yield CO2, NH3 and S- ureidoglycine, which is unstable and readily undergoes a second deamination by S-ureidoglycine aminohydrolase AllE to yield S- ureidoglycolate and NH3. In vivo, the spontaneous release of S-ureidoglycolate and ammonia from S-ureidoglycine appears to be too slow to sustain an efficient flux of nitrogen. (411 aa)
allDUreidoglycolate dehydrogenase; AllD plays a pivotal role as a metabolic branch-point enzyme in nitrogen utilization via the assimilation of allantoin. It is able to utilize allantoin as a sole source of nitrogen under anaerobic conditions. Catalyzes the oxidation of ureidoglycolate to oxalurate. (349 aa)
fdrAPutative NAD(P)-binding acyl-CoA synthetase; Not known; multicopy suppressor of dominant negative ftsH mutations; To E.coli YahF and some, to bacterial SucD. (555 aa)
ylbFPutative anaerobic allantoin catabolic oxamate carbamoyltransferase; Putative carboxylase. (271 aa)
ylbENO-induced DUF1116 protein; To E.coli YahG. (419 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: very high (>100%) [HD]