Your Input: | |||||
map | Methionine aminopeptidase; Removes the N-terminal methionine from nascent proteins. The N-terminal methionine is often cleaved when the second residue in the primary sequence is small and uncharged (Met-Ala-, Cys, Gly, Pro, Ser, Thr, or Val). Requires deformylation of the N(alpha)-formylated initiator methionine before it can be hydrolyzed. Belongs to the peptidase M24A family. Methionine aminopeptidase type 1 subfamily. (264 aa) | ||||
codA | Cytosine/isoguanine deaminase; Catalyzes the hydrolytic deamination of cytosine to uracil. Is involved in the pyrimidine salvage pathway, which allows the cell to utilize cytosine for pyrimidine nucleotide synthesis. Is also able to catalyze deamination of isoguanine, a mutagenic oxidation product of adenine in DNA, and of isocytosine. To a lesser extent, also catalyzes the conversion of 5-fluorocytosine (5FC) to 5-fluorouracil (5FU); this activity allows the formation of a cytotoxic chemotherapeutic agent from a non-cytotoxic precursor. Belongs to the metallo-dependent hydrolases supe [...] (427 aa) | ||||
rpe | D-ribulose-5-phosphate 3-epimerase; Catalyzes the reversible epimerization of D-ribulose 5- phosphate to D-xylulose 5-phosphate. (225 aa) | ||||
cyaY | Iron-dependent inhibitor of iron-sulfur cluster formation; Involved in iron-sulfur (Fe-S) cluster assembly. May act as a regulator of Fe-S biogenesis. Can bind both Fe(2+) and Fe(3+) ions. In vivo, has a positive effect on Fe-S cluster biogenesis under iron- rich growth conditions. In vitro, can inhibit IscS cysteine desulfurase activity and the formation of Fe-S clusters on IscU. In vitro, in the presence of IscS and cysteine, Fe(3+)-CyaY can be used as an iron donor during Fe-S cluster assembly on the scaffold protein IscU. (106 aa) | ||||
tdh | L-threonine 3-dehydrogenase, NAD(P)-binding; Catalyzes the NAD(+)-dependent oxidation of L-threonine to 2- amino-3-ketobutyrate. To a lesser extent, also catalyzes the oxidation of D-allo-threonine and L-threonine amide, but not that of D-threonine and L-allothreonine. Cannot utilize NADP(+) instead of NAD(+). Belongs to the zinc-containing alcohol dehydrogenase family. (341 aa) | ||||
adeD | Cryptic adenine deaminase; Protein involved in metabolic process; Belongs to the metallo-dependent hydrolases superfamily. Adenine deaminase family. (588 aa) | ||||
mhpB | 2,3-dihydroxyphenylpropionate 1,2-dioxygenase; Catalyzes the non-heme iron(II)-dependent oxidative cleavage of 2,3-dihydroxyphenylpropionic acid and 2,3-dihydroxicinnamic acid into 2-hydroxy-6-ketononadienedioate and 2-hydroxy-6- ketononatrienedioate, respectively; Belongs to the LigB/MhpB extradiol dioxygenase family. (314 aa) | ||||
uxaA | Altronate hydrolase; Catalyzes the dehydration of D-altronate. (495 aa) | ||||
garD | D-galactarate dehydrogenase; Catalyzes the dehydration of galactarate to form 5-dehydro-4- deoxy-D-glucarate. (523 aa) | ||||
def | Peptide deformylase; Removes the formyl group from the N-terminal Met of newly synthesized proteins. Requires at least a dipeptide for an efficient rate of reaction. N-terminal L-methionine is a prerequisite for activity but the enzyme has broad specificity at other positions. (169 aa) | ||||
uxuA | Mannonate hydrolase; Catalyzes the dehydration of D-mannonate. (394 aa) | ||||
tauD | Taurine dioxygenase, 2-oxoglutarate-dependent; Catalyzes the alpha-ketoglutarate-dependent hydroxylation of taurine yielding sulfite and aminoacetaldehyde after decomposition of an unstable intermediate. Is required for the utilization of taurine (2-aminoethanesulfonate) as an alternative sulfur source for growth in the absence of sulfate. To a lesser extent, pentanesulfonate, 3-(N-morpholino)propanesulfonate and 1,3-dioxo-2-isoindolineethanesulfonate are also desulfonated by this enzyme in vitro; however, desulfonation by TauD of organosulfonates other than taurine seem to be of littl [...] (283 aa) | ||||
galT | Galactose-1-phosphate uridylyltransferase; Protein involved in cell surface antigen activity, host-interacting, galactose metabolic process, colanic acid biosynthetic process, carbohydrate catabolic process and response to desiccation; Belongs to the galactose-1-phosphate uridylyltransferase type 1 family. (348 aa) | ||||
roxA | 50S ribosomal protein L16 arginine hydroxylase; Growth-regulating oxygenase that catalyzes the hydroxylation of 50S ribosomal protein L16 on 'Arg-81'. (373 aa) | ||||
adhE | Acetaldehyde dehydrogenase [acetylating]; This enzyme has three activities: ADH, ACDH, and PFL- deactivase. In aerobic conditions it acts as a hydrogen peroxide scavenger. The PFL deactivase activity catalyzes the quenching of the pyruvate-formate-lyase catalyst in an iron, NAD, and CoA dependent reaction; In the N-terminal section; belongs to the aldehyde dehydrogenase family. (891 aa) | ||||
ftnB | Ferritin B, putative ferrous iron reservoir; Ferritin-like protein; Protein involved in iron ion transport. (167 aa) | ||||
ftnA | Ferritin iron storage protein (cytoplasmic); Iron-storage protein; Belongs to the ferritin family. Prokaryotic subfamily. (165 aa) | ||||
alkB | Oxidative demethylase of N1-methyladenine or N3-methylcytosine DNA lesions; Dioxygenase that repairs alkylated DNA and RNA containing 3- methylcytosine or 1-methyladenine by oxidative demethylation. Has highest activity towards 3-methylcytosine. Has lower activity towards alkylated DNA containing ethenoadenine, and no detectable activity towards 1-methylguanine or 3-methylthymine. Accepts double-stranded and single-stranded substrates. Requires molecular oxygen, alpha- ketoglutarate and iron. Provides extensive resistance to alkylating agents such as MMS and DMS (SN2 agents), but not t [...] (216 aa) | ||||
iscX | Fe(2+) donor and activity modulator for cysteine desulfurase; May function as iron donor in the assembly of iron-sulfur clusters; Belongs to the IscX family. (66 aa) | ||||
iscA | FeS cluster assembly protein; Is able to transfer iron-sulfur clusters to apo-ferredoxin. Multiple cycles of [2Fe2S] cluster formation and transfer are observed, suggesting that IscA acts catalytically. Recruits intracellular free iron so as to provide iron for the assembly of transient iron-sulfur cluster in IscU in the presence of IscS, L-cysteine and the thioredoxin reductase system TrxA/TrxB; Belongs to the HesB/IscA family. (107 aa) | ||||
iscU | Iron-sulfur cluster assembly scaffold protein; A scaffold on which IscS assembles Fe-S clusters. Exists as 2 interconverting forms, a structured (S) and disordered (D) form. The D- state is the preferred substrate for IscS. Converts to the S-state when an Fe-S cluster is assembled, which helps it dissociate from IscS to transfer the Fe-S to an acceptor. It is likely that Fe-S cluster coordination is flexible as the role of this complex is to build and then hand off Fe-S clusters; Belongs to the NifU family. (128 aa) | ||||
csiD | tRNA-Ile; Acts as an alpha-ketoglutarate-dependent dioxygenase catalyzing hydroxylation of glutarate (GA) to L-2-hydroxyglutarate (L2HG) in the stationary phase of E.coli. Functions in a L-lysine degradation pathway that proceeds via cadaverine, glutarate and L-2- hydroxyglutarate. Other dicarboxylic acids (oxalate, malonate, succinate, adipate, and pimelate) are not substrates for this enzyme. (325 aa) | ||||
norR | Anaerobic nitric oxide reductase DNA-binding transcriptional activator; Required for the expression of anaerobic nitric oxide (NO) reductase, acts as a transcriptional activator for at least the norVW operon. Activation also requires sigma-54. Not required for induction of the aerobic NO-detoxifying enzyme NO dioxygenase. Binds to the promoter region of norVW, to a consensus target sequence, GT-(N7)-AC, which is highly conserved among proteobacteria. (504 aa) | ||||
fucO | L-1,2-propanediol oxidoreductase; Protein involved in carbohydrate catabolic process and glycolate metabolic process; Belongs to the iron-containing alcohol dehydrogenase family. (382 aa) | ||||
cpdA | 3',5' cAMP phosphodiesterase; Hydrolyzes cAMP to 5'-AMP. Plays an important regulatory role in modulating the intracellular concentration of cAMP, thereby influencing cAMP-dependent processes. Specific for cAMP. (275 aa) | ||||
ygiD | 4,5- DOPA-extradiol-dioxygenase; In vitro, opens the cyclic ring of dihydroxy-phenylalanine (DOPA) between carbons 4 and 5, thus producing an unstable seco-DOPA that rearranges nonenzymatically to betalamic acid. The physiological substrate is unknown. (262 aa) |