STRINGSTRING
hflK hflK dnaK dnaK dnaJ dnaJ degP degP gloB gloB yajL yajL tig tig clpP clpP lon lon htpG htpG ybeD ybeD ybeY ybeY mngR mngR moaA moaA rhlE rhlE clpS clpS clpA clpA pncB pncB ssuD ssuD hspQ hspQ yccX yccX hflD hflD dsbB dsbB oppA oppA pspA pspA hslJ hslJ ldhA ldhA lsrR lsrR marR marR pykF pykF yobF yobF yebS yebS yfcA yfcA eutD eutD pka pka clpB clpB grpE grpE yggE yggE loiP loiP nudF nudF ttdB ttdB rpoD rpoD yhbO yhbO pnp pnp rpoA rpoA slyD slyD hslR hslR hslO hslO rpoH rpoH rpoZ rpoZ ibpB ibpB ibpA ibpA phoU phoU dtd dtd sodA sodA hslU hslU hslV hslV rpoB rpoB rpoC rpoC groS groS groL groL miaA miaA hflX hflX hflC hflC yoeB yoeB
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
hflKModulator for HflB protease specific for phage lambda cII repressor; HflC and HflK help govern the stability of phage lambda cII protein, and thereby control the lysogenization frequency of phage lambda. HflKC inhibits the SecY-degrading activity of FtsH, possibly helping quality control of integral membrane proteins. Belongs to the band 7/mec-2 family. HflK subfamily. (419 aa)
dnaKChaperone Hsp70, with co-chaperone DnaJ; Plays an essential role in the initiation of phage lambda DNA replication, where it acts in an ATP-dependent fashion with the DnaJ protein to release lambda O and P proteins from the preprimosomal complex. DnaK is also involved in chromosomal DNA replication, possibly through an analogous interaction with the DnaA protein. Also participates actively in the response to hyperosmotic shock. (638 aa)
dnaJChaperone Hsp40, DnaK co-chaperone; Interacts with DnaK and GrpE to disassemble a protein complex at the origins of replication of phage lambda and several plasmids. Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK t [...] (376 aa)
degPSerine endoprotease (protease Do), membrane-associated; DegP acts as a chaperone at low temperatures but switches to a peptidase (heat shock protein) at higher temperatures. Degrades transiently denatured and unfolded or misfolded proteins which accumulate in the periplasm following heat shock or other stress conditions. DegP is efficient with Val-Xaa and Ile-Xaa peptide bonds, suggesting a preference for beta-branched side chain amino acids. Only unfolded proteins devoid of disulfide bonds appear capable of being cleaved, thereby preventing non-specific proteolysis of folded proteins. [...] (474 aa)
gloBHydroxyacylglutathione hydrolase; Type II glyoxalase that catalyzes the hydrolysis of (R)-S- lactoylglutathione to (R)-lactate and glutathione. Is more efficient than the isozyme GloC, and plays a major contribution to methylglyoxal (MG) detoxification in E.coli. The two isoenzymes have additive effects and ensure maximal MG degradation. (251 aa)
yajLOxidative-stress-resistance chaperone; Protein and nucleotide deglycase that catalyzes the deglycation of the Maillard adducts formed between amino groups of proteins or nucleotides and reactive carbonyl groups of glyoxals. Thus, functions as a protein deglycase that repairs methylglyoxal- and glyoxal-glycated proteins, and releases repaired proteins and lactate or glycolate, respectively. Deglycates cysteine, arginine and lysine residues in proteins, and thus reactivates these proteins by reversing glycation by glyoxals. Is able to repair glycated serum albumin, collagen, glyceraldehy [...] (196 aa)
tigPeptidyl-prolyl cis/trans isomerase (trigger factor); Involved in protein export. Acts as a chaperone by maintaining the newly synthesized secretory and non-secretory proteins in an open conformation. Binds to 3 regions of unfolded substrate PhoA, preferring aromatic and hydrophobic residues, keeping it stretched out and unable to form aggregates. Binds to nascent polypeptide chains via ribosomal protein L23. Functions as a peptidyl-prolyl cis-trans isomerase in vitro, this activity is dispensible in vivo for chaperone activity. Belongs to the FKBP-type PPIase family. Tig subfamily. (432 aa)
clpPProteolytic subunit of ClpA-ClpP and ClpX-ClpP ATP-dependent serine proteases; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. May play the role of a master protease which is attracted to different substrates by different specificity factors such as ClpA or ClpX. Participates in the final steps of RseA-sigma-E degradation, liberating sigma-E to induce the extracytoplasmic-stress response. Degrades antitoxin MazE. (207 aa)
lonDNA-binding ATP-dependent protease La; ATP-dependent serine protease that mediates the selective degradation of mutant and abnormal proteins as well as certain short- lived regulatory proteins, including some antitoxins. Required for cellular homeostasis and for survival from DNA damage and developmental changes induced by stress. Degrades polypeptides processively to yield small peptide fragments that are 5 to 10 amino acids long. Binds to DNA in a double-stranded, site-specific manner. Endogenous substrates include the regulatory proteins RcsA and SulA, the transcriptional activator [...] (784 aa)
htpGProtein refolding molecular co-chaperone Hsp90, Hsp70-dependent; Molecular chaperone. Has ATPase activity. (624 aa)
ybeDUPF0250 family protein. (87 aa)
ybeYssRNA-specific endoribonuclease; Single strand-specific metallo-endoribonuclease involved in late-stage 70S ribosome quality control and in maturation of the 3' terminus of the 16S rRNA. Acts together with the RNase R to eliminate defective 70S ribosomes, but not properly matured 70S ribosomes or individual subunits, by a process mediated specifically by the 30S ribosomal subunit. Involved in the processing of 16S, 23S and 5S rRNAs, with a particularly strong effect on maturation at both the 5'- and 3'- ends of 16S rRNA as well as maturation of the 5'-end of 23S and 5S rRNAs. (155 aa)
mngRTranscriptional repressor for the mannosyl-D-glycerate catabolic operon; Represses mngA and mngB. Regulates its own expression. (240 aa)
moaAMolybdopterin biosynthesis protein A; Catalyzes, together with MoaC, the conversion of 5'-GTP to cyclic pyranopterin monophosphate (cPMP or molybdopterin precursor Z). (329 aa)
rhlEATP-dependent RNA helicase; DEAD-box RNA helicase involved in ribosome assembly. Has RNA- dependent ATPase activity and unwinds double-stranded RNA. May play a role in the interconversion of ribosomal RNA-folding intermediates that are further processed by DeaD or SrmB during ribosome maturation. (454 aa)
clpSRegulatory protein for ClpA substrate specificity; Involved in the modulation of the specificity of the ClpAP- mediated ATP-dependent protein degradation. (106 aa)
clpAATPase and specificity subunit of ClpA-ClpP ATP-dependent serine protease, chaperone activity; ATP-dependent specificity component of the ClpAP protease. It directs the protease to specific substrates. It has unfoldase activity. The primary function of the ClpA-ClpP complex appears to be the degradation of unfolded or abnormal proteins. (758 aa)
pncBNicotinate phosphoribosyltransferase; Catalyzes the synthesis of beta-nicotinate D-ribonucleotide from nicotinate and 5-phospho-D-ribose 1-phosphate at the expense of ATP; Belongs to the NAPRTase family. (400 aa)
ssuDAlkanesulfonate monooxygenase, FMNH(2)-dependent; Involved in desulfonation of aliphatic sulfonates. Catalyzes the conversion of pentanesulfonic acid to sulfite and pentaldehyde and is able to desulfonate a wide range of sulfonated substrates including C-2 to C-10 unsubstituted linear alkanesulfonates, substituted ethanesulfonic acids and sulfonated buffers; Belongs to the SsuD family. (381 aa)
hspQHeat shock protein involved in degradation of mutant DnaA; Involved in the degradation of certain denaturated proteins, including DnaA, during heat shock stress. (105 aa)
yccXWeak acylphosphatase. (92 aa)
hflDPutative lysogenization regulator; Negative regulator of phage lambda lysogenization. Contributes to the degradation of the phage regulatory protein CII. Acts probably by holding CII on the membrane surface, away from the target promoters, but close to the FtsH protease. Belongs to the HflD family. (213 aa)
dsbBOxidoreductase that catalyzes reoxidation of DsbA protein disulfide isomerase I; Required for disulfide bond formation in some periplasmic proteins such as PhoA or OmpA. Acts by oxidizing the DsbA protein. PhoP-regulated transcription is redox-sensitive, being activated when the periplasm becomes more reducing (deletion of dsbA/dsbB, treatment with dithiothreitol). MgrB acts between DsbA/DsbB and PhoP/PhoQ in this pathway. (176 aa)
oppAOligopeptide ABC transporter periplasmic binding protein; This protein is a component of the oligopeptide permease, a binding protein-dependent transport system, it binds peptides up to five amino acids long with high affinity; Belongs to the bacterial solute-binding protein 5 family. (543 aa)
pspARegulatory protein for phage-shock-protein operon; The phage shock protein (psp) operon (pspABCDE) may play a significant role in the competition for survival under nutrient- or energy-limited conditions. PspA negatively regulates expression of the pspABCDE promoter and of pspG through negative regulation of the psp- specific transcriptional activator PspF. Is also required for membrane integrity, efficient translocation and maintenance of the proton motive force. Belongs to the PspA/IM30 family. (222 aa)
hslJHeat-inducible lipoprotein involved in novobiocin resistance; Heat shock protein hslJ; Protein involved in response to temperature stimulus. (140 aa)
ldhAFermentative D-lactate dehydrogenase, NAD-dependent; Fermentative lactate dehydrogenase; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (329 aa)
lsrRLsr operon transcriptional repressor; Regulates transcription of many different genes. In the absence of autoinducer 2 (AI-2), represses transcription of the lsrACDBFG operon and its own transcription. In the presence of AI-2, LsrR is inactivated by binding phospho-AI-2, leading to the transcription of the lsr genes. (317 aa)
marRTranscriptional repressor of multiple antibiotic resistance; Repressor of the marRAB operon which is involved in the activation of both antibiotic resistance and oxidative stress genes. Binds to the marO operator/promoter site. (144 aa)
pykFPyruvate kinase I (formerly F), fructose stimulated; Protein involved in glycolysis, fermentation and anaerobic respiration. (470 aa)
yobFDUF2527 family heat-induced protein. (47 aa)
yebSInner membrane PqiA domain protein; Component of a transport pathway that contributes to membrane integrity; Belongs to the PqiA family. (427 aa)
yfcATauE/TSUP family inner membrane protein; Putative structural protein. (269 aa)
eutDPhosphate acetyltransferase; Ethanolamine utilization; homolog of Salmonella acetyl/butyryl P transferase; Protein involved in amine catabolic process. (338 aa)
pkaProtein lysine acetyltransferase; Catalyzes the acetyl-CoA-dependent acetylation of lysine residues of a large number of target proteins. Acetylates RNase R in exponential phase cells and RNase II. Required for the glucose-dependent acetylation on multiple lysines of alpha, beta and beta' RNAP subunits. Also acetylates acetyl-coenzyme A synthetase (Acs) and the chromosomal replication initiator protein DnaA, and inhibits their activity. Overexpression leads to the acetylation of a large number of additional proteins and inhibits motility. (886 aa)
clpBProtein disaggregation chaperone; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK. (857 aa)
grpEHeat shock protein; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-depen [...] (197 aa)
yggEOxidative stress defense protein; Putative actin. (246 aa)
loiPPhe-Phe periplasmic metalloprotease, OM lipoprotein; Metalloprotease that cleaves substrates preferentially between Phe-Phe residues. Plays a role in response to some stress conditions. Seems to regulate the expression of speB. (252 aa)
nudFADP-ribose pyrophosphatase; Acts on ADP-mannose and ADP-glucose as well as ADP-ribose. Prevents glycogen biosynthesis. The reaction catalyzed by this enzyme is a limiting step of the gluconeogenic process. Belongs to the Nudix hydrolase family. NudF subfamily. (209 aa)
ttdBL-tartrate dehydratase, subunit B; Protein involved in fermentation. (201 aa)
rpoDRNA polymerase, sigma 70 (sigma D) factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth. Preferentially transcribes genes associated with fast growth, such as ribosomal operons, other protein-synthesis related genes, rRNA- and tRNA-encoding genes and prfB. Belongs to the sigma-70 factor family. RpoD/SigA subfamily. (613 aa)
yhbOStress-resistance protein; Protein and nucleotide deglycase that catalyzes the deglycation of the Maillard adducts formed between amino groups of proteins or nucleotides and reactive carbonyl groups of glyoxals. Thus, functions as a protein deglycase that repairs methylglyoxal- and glyoxal-glycated proteins, and releases repaired proteins and lactate or glycolate, respectively. Deglycates cysteine, arginine and lysine residues in proteins, and thus reactivates these proteins by reversing glycation by glyoxals. Is able to repair glycated serum albumin, collagen, glyceraldehyde-3-phospha [...] (172 aa)
pnpPolynucleotide phosphorylase/polyadenylase; Involved in mRNA degradation. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'- to 5'- direction. Also involved, along with RNase II, in tRNA processing. RNases II and R contribute to rRNA degradation during starvation, while RNase R and PNPase are the major contributors to quality control of rRNA during steady state growth. (711 aa)
rpoARNA polymerase, alpha subunit; DNA-dependent RNA polymerase (RNAP) catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. This subunit plays an important role in subunit assembly since its dimerization is the first step in the sequential assembly of subunits to form the holoenzyme. (329 aa)
slyDFKBP-type peptidyl prolyl cis-trans isomerase (rotamase); Folding helper with both chaperone and peptidyl-prolyl cis- trans isomerase (PPIase) activities. Chaperone activity prevents aggregation of unfolded or partially folded proteins and promotes their correct folding. PPIases catalyze the cis-trans isomerization of Xaa- Pro bonds of peptides, which accelerates slow steps of protein folding and thus shortens the lifetime of intermediates. Both strategies lower the concentration of intermediates and increase the productivity and yield of the folding reaction. SlyD could be involved in [...] (196 aa)
hslRRibosome-associated heat shock protein Hsp15; Involved in the recycling of free 50S ribosomal subunits that still carry a nascent chain. Binds RNA more specifically than DNA. Binds with very high affinity to the free 50S ribosomal subunit. Does not bind it when it is part of the 70S ribosome; Belongs to the HSP15 family. (133 aa)
hslOHeat shock protein Hsp33; Redox regulated molecular chaperone. Protects both thermally unfolding and oxidatively damaged proteins from irreversible aggregation. Plays an important role in the bacterial defense system toward oxidative stress. (292 aa)
rpoHRNA polymerase, sigma 32 (sigma H) factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is involved in regulation of expression of heat shock genes. Intracellular concentration of free RpoH protein increases in response to heat shock, which causes association with RNA polymerase (RNAP) and initiation of transcription of heat shock genes, including numerous global transcriptional regulators and genes involved in maintaining membrane functionality and homeostasis. RpoH is then quic [...] (284 aa)
rpoZRNA polymerase, omega subunit; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits. (91 aa)
ibpBHeat shock chaperone; Associates with aggregated proteins, together with IbpA, to stabilize and protect them from irreversible denaturation and extensive proteolysis during heat shock and oxidative stress. Aggregated proteins bound to the IbpAB complex are more efficiently refolded and reactivated by the ATP-dependent chaperone systems ClpB and DnaK/DnaJ/GrpE. Its activity is ATP-independent. (142 aa)
ibpAHeat shock chaperone; Associates with aggregated proteins, together with IbpB, to stabilize and protect them from irreversible denaturation and extensive proteolysis during heat shock and oxidative stress. Aggregated proteins bound to the IbpAB complex are more efficiently refolded and reactivated by the ATP-dependent chaperone systems ClpB and DnaK/DnaJ/GrpE. Its activity is ATP-independent. (137 aa)
phoUNegative regulator of PhoR/PhoB two-component regulator; Part of the phosphate (Pho) regulon, which plays a key role in phosphate homeostasis. Encoded together with proteins of the phosphate-specific transport (Pst) system in the polycistronic pstSCAB- phoU operon. PhoU is essential for the repression of the Pho regulon at high phosphate conditions. In this role, it may bind, possibly as a chaperone, to PhoR, PhoB or a PhoR-PhoB complex to promote dephosphorylation of phospho-PhoB, or inhibit formation of the PhoR- PhoB transitory complex. Is also part of complex networks important for [...] (241 aa)
dtdD-tyr-tRNA(Tyr) deacylase; An aminoacyl-tRNA editing enzyme that deacylates mischarged D-aminoacyl-tRNAs, has no observable editing activity on tRNAs charged with cognate L-amino acid. Edits mischarged glycyl-tRNA(Ala) more efficiently than AlaRS. Acts via tRNA-based rather than protein-based catalysis. Rejects correctly charged L-amino acid-tRNAs from its binding site rather than specifically recognizing incorrectly charged D-amino acid-tRNAs. Hydrolyzes correctly charged, achiral, glycyl-tRNA(Gly); GTP-bound EF-Tu (tested with T.thermophilus EF-Tu AC Q5SHN6) protects charged glycyl-t [...] (145 aa)
sodASuperoxide dismutase, Mn; Destroys superoxide anion radicals which are normally produced within the cells and which are toxic to biological systems; Belongs to the iron/manganese superoxide dismutase family. (206 aa)
hslUMolecular chaperone and ATPase component of HslUV protease; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis. (443 aa)
hslVPeptidase component of the HslUV protease; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery. The complex has been shown to be involved in the specific degradation of heat shock induced transcription factors such as RpoH and SulA. In addition, small hydrophobic peptides are also hydrolyzed by HslV. HslV has weak protease activity even in the absence of HslU, but this activity is induced more than 100-fold in the presence of HslU. HslU recognizes protein substrates and unfolds these before guiding them to HslV for hydrolysis. [...] (176 aa)
rpoBRNA polymerase, beta subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1342 aa)
rpoCRNA polymerase, beta prime subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1407 aa)
groSCpn10 chaperonin GroES, small subunit of GroESL; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter; Belongs to the GroES chaperonin family. (97 aa)
groLCpn60 chaperonin GroEL, large subunit of GroESL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. (548 aa)
miaADelta(2)-isopentenylpyrophosphate tRNA-adenosine transferase; Catalyzes the transfer of a dimethylallyl group onto the adenine at position 37 in tRNAs that read codons beginning with uridine, leading to the formation of N6-(dimethylallyl)adenosine (i(6)A); Belongs to the IPP transferase family. (316 aa)
hflXGTPase, stimulated by 50S subunit binding; GTPase that associates with the 50S ribosomal subunit and may have a role during protein synthesis or ribosome biogenesis. In vitro, also exhibits ATPase activity. (426 aa)
hflCHflB protease modulator specific for phage lambda cII repressor; HflC and HflK help govern the stability of phage lambda cII protein, and thereby control the lysogenization frequency of phage lambda. HflKC inhibits the SecY-degrading activity of FtsH, possibly helping quality control of integral membrane proteins. Belongs to the band 7/mec-2 family. HflC subfamily. (334 aa)
yoeBToxin of the YoeB-YefM toxin-antitoxin system; Toxic component of a type II toxin-antitoxin (TA) system. Its mode of function is controversial; it has been proposed to be an mRNA interferase but also an inhibitor of translation initiation. When overproduced in wild-type cells, inhibits bacterial growth and translation by cleavage of mRNA molecules while it has a weak effect on colony forming ability. Overproduction of Lon protease specifically activates YoeB-dependent mRNA cleavage, leading to lethality. YefM binds to the promoter region of the yefM-yeoB operon to repress transcription [...] (84 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (22%) [HD]