node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
ftsH | hflC | b3178 | b4175 | Protease, ATP-dependent zinc-metallo; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins. Degrades a few membrane proteins that have not been assembled into complexes such as SecY, F(0) ATPase subunit a and YccA, and also cytoplasmic proteins sigma-32, LpxC, KdtA and phage lambda cII protein among others. Degrades membrane proteins in a processive manner starting at either the N- or C-terminus; recognition requires a cytoplasmic tail of about 20 residues with no apparent [...] | HflB protease modulator specific for phage lambda cII repressor; HflC and HflK help govern the stability of phage lambda cII protein, and thereby control the lysogenization frequency of phage lambda. HflKC inhibits the SecY-degrading activity of FtsH, possibly helping quality control of integral membrane proteins. Belongs to the band 7/mec-2 family. HflC subfamily. | 0.999 |
ftsH | hflK | b3178 | b4174 | Protease, ATP-dependent zinc-metallo; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins. Degrades a few membrane proteins that have not been assembled into complexes such as SecY, F(0) ATPase subunit a and YccA, and also cytoplasmic proteins sigma-32, LpxC, KdtA and phage lambda cII protein among others. Degrades membrane proteins in a processive manner starting at either the N- or C-terminus; recognition requires a cytoplasmic tail of about 20 residues with no apparent [...] | Modulator for HflB protease specific for phage lambda cII repressor; HflC and HflK help govern the stability of phage lambda cII protein, and thereby control the lysogenization frequency of phage lambda. HflKC inhibits the SecY-degrading activity of FtsH, possibly helping quality control of integral membrane proteins. Belongs to the band 7/mec-2 family. HflK subfamily. | 0.999 |
hflC | ftsH | b4175 | b3178 | HflB protease modulator specific for phage lambda cII repressor; HflC and HflK help govern the stability of phage lambda cII protein, and thereby control the lysogenization frequency of phage lambda. HflKC inhibits the SecY-degrading activity of FtsH, possibly helping quality control of integral membrane proteins. Belongs to the band 7/mec-2 family. HflC subfamily. | Protease, ATP-dependent zinc-metallo; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins. Degrades a few membrane proteins that have not been assembled into complexes such as SecY, F(0) ATPase subunit a and YccA, and also cytoplasmic proteins sigma-32, LpxC, KdtA and phage lambda cII protein among others. Degrades membrane proteins in a processive manner starting at either the N- or C-terminus; recognition requires a cytoplasmic tail of about 20 residues with no apparent [...] | 0.999 |
hflC | hflK | b4175 | b4174 | HflB protease modulator specific for phage lambda cII repressor; HflC and HflK help govern the stability of phage lambda cII protein, and thereby control the lysogenization frequency of phage lambda. HflKC inhibits the SecY-degrading activity of FtsH, possibly helping quality control of integral membrane proteins. Belongs to the band 7/mec-2 family. HflC subfamily. | Modulator for HflB protease specific for phage lambda cII repressor; HflC and HflK help govern the stability of phage lambda cII protein, and thereby control the lysogenization frequency of phage lambda. HflKC inhibits the SecY-degrading activity of FtsH, possibly helping quality control of integral membrane proteins. Belongs to the band 7/mec-2 family. HflK subfamily. | 0.999 |
hflK | ftsH | b4174 | b3178 | Modulator for HflB protease specific for phage lambda cII repressor; HflC and HflK help govern the stability of phage lambda cII protein, and thereby control the lysogenization frequency of phage lambda. HflKC inhibits the SecY-degrading activity of FtsH, possibly helping quality control of integral membrane proteins. Belongs to the band 7/mec-2 family. HflK subfamily. | Protease, ATP-dependent zinc-metallo; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins. Degrades a few membrane proteins that have not been assembled into complexes such as SecY, F(0) ATPase subunit a and YccA, and also cytoplasmic proteins sigma-32, LpxC, KdtA and phage lambda cII protein among others. Degrades membrane proteins in a processive manner starting at either the N- or C-terminus; recognition requires a cytoplasmic tail of about 20 residues with no apparent [...] | 0.999 |
hflK | hflC | b4174 | b4175 | Modulator for HflB protease specific for phage lambda cII repressor; HflC and HflK help govern the stability of phage lambda cII protein, and thereby control the lysogenization frequency of phage lambda. HflKC inhibits the SecY-degrading activity of FtsH, possibly helping quality control of integral membrane proteins. Belongs to the band 7/mec-2 family. HflK subfamily. | HflB protease modulator specific for phage lambda cII repressor; HflC and HflK help govern the stability of phage lambda cII protein, and thereby control the lysogenization frequency of phage lambda. HflKC inhibits the SecY-degrading activity of FtsH, possibly helping quality control of integral membrane proteins. Belongs to the band 7/mec-2 family. HflC subfamily. | 0.999 |
yfaT | yfhM | b2229 | b2520 | Uncharacterized protein YfaT; Pseudogene, bacterial alpha2-macroglobulin YfaS variant family; putative membrane protein; To P.aeruginosa PA4490 and T.maritima TM0986. | Bacterial alpha2-macroglobulin colonization factor ECAM; Protects the bacterial cell from host peptidases. Acts by a 'trapping' mechanism. Cleavage of the bait-region domain by host peptidases leads to a global conformational change, which results in entrapment of the host peptidase and activation of the thioester bond that covalently binds the attacking host peptidase. Trapped peptidases are still active except against very large substrates. May protect the entire periplam, including the lipoproteins anchored to the periplasmic side of the outer membrane, against intruding endopeptidases. | 0.717 |
yfhM | yfaT | b2520 | b2229 | Bacterial alpha2-macroglobulin colonization factor ECAM; Protects the bacterial cell from host peptidases. Acts by a 'trapping' mechanism. Cleavage of the bait-region domain by host peptidases leads to a global conformational change, which results in entrapment of the host peptidase and activation of the thioester bond that covalently binds the attacking host peptidase. Trapped peptidases are still active except against very large substrates. May protect the entire periplam, including the lipoproteins anchored to the periplasmic side of the outer membrane, against intruding endopeptidases. | Uncharacterized protein YfaT; Pseudogene, bacterial alpha2-macroglobulin YfaS variant family; putative membrane protein; To P.aeruginosa PA4490 and T.maritima TM0986. | 0.717 |