STRINGSTRING
yejH yejH arnB arnB arnC arnC arnA arnA arnD arnD arnT arnT arnF arnF mepA mepA ypdI ypdI lpxP lpxP gltX gltX hisS hisS rodZ rodZ pbpC pbpC lepA lepA rplS rplS rpsP rpsP smpB smpB alaS alaS srlQ srlQ lgt lgt lysS lysS prfB prfB hldE hldE bacA bacA tsaD tsaD rpsU rpsU lpoA lpoA rpsO rpsO infB infB rimP rimP yhbX yhbX glmM glmM dacB dacB rpmA rpmA rplU rplU murA murA kdsD kdsD kdsC kdsC mtgA mtgA rpsI rpsI rplM rplM mreD mreD mreC mreC mreB mreB def def fmt fmt rplQ rplQ rpsD rpsD rpsK rpsK rpsM rpsM rpmJ rpmJ rplO rplO rpmD rpmD rpsE rpsE rplR rplR rplF rplF rpsH rpsH rpsN rpsN rplE rplE rplX rplX rplN rplN rpsQ rpsQ rpmC rpmC rplP rplP rpsC rpsC rplV rplV rpsS rpsS rplB rplB rplW rplW rplD rplD rplC rplC rpsJ rpsJ tufA tufA fusA fusA rpsG rpsG rpsL rpsL frlB frlB glgB glgB glgC glgC glgA glgA yhgF yhgF mrcA mrcA arfA arfA arnE arnE ykgO ykgO wecF wecF ettA ettA prfC prfC opgB opgB valS valS mpl mpl rplI rplI rpsR rpsR rpsF rpsF hflX hflX tsaE tsaE epmA epmA efp efp lysU lysU eptA eptA alr alr yjbH yjbH yjbG yjbG yjbF yjbF yjbE yjbE rplL rplL rplJ rplJ rplA rplA rplK rplK tufB tufB murB murB murI murI eptC eptC rpmE rpmE wecG wecG wzyE wzyE wzxE wzxE wecE wecE wecD wecD rffH rffH rffG rffG wecC wecC wecB wecB wzzE wzzE wecA wecA glmU glmU glmS glmS rpmH rpmH rpmB rpmB rpmG rpmG waaA waaA waaQ waaQ waaG waaG waaP waaP waaS waaS waaB waaB waaO waaO waaR waaR waaY waaY waaZ waaZ waaU waaU waaL waaL waaC waaC waaF waaF hldD hldD selA selA selB selB yiaT yiaT wecH wecH glyQ glyQ glyS glyS eptB eptB bcsG bcsG bcsF bcsF bcsE bcsE yhjR yhjR bcsA bcsA trpS trpS bcsB bcsB bcsC bcsC rpsT rpsT ileS ileS lspA lspA ftsI ftsI murE murE murF murF mraY mraY murD murD ftsW ftsW murG murG murC murC ddlB ddlB gluQ gluQ mrcB mrcB rpsB rpsB tsf tsf frr frr ispU ispU arfB arfB proS proS gmhB gmhB gmhA gmhA yafK yafK yafQ yafQ pepD pepD ykgM ykgM ddlA ddlA ybaK ybaK cysS cysS ybcJ ybcJ cusC cusC fepE fepE dacA dacA mrdB mrdB mrdA mrdA leuS leuS lnt lnt ybeY ybeY glnS glnS galE galE mcbA mcbA opgE opgE ldtB ldtB dacC dacC ybjG ybjG rimK rimK infA infA serS serS rpsA rpsA lpxK lpxK kdsB kdsB ldtD ldtD asnS asnS etk etk opgC opgC opgG opgG opgH opgH lpxL lpxL murJ murJ rpmF rpmF yceG yceG lpoB lpoB nagZ nagZ ldtC ldtC ldcA ldcA pth pth prfA prfA prmC prmC kdsA kdsA galU galU pgpB pgpB yciH yciH opgD opgD sra sra manA manA tyrS tyrS mepH mepH ldtE ldtE pheT pheT pheS pheS rplT rplT rpmI rpmI infC infC thrS thrS mipA mipA tsaB tsaB lpxM lpxM mepM mepM aspS aspS argS argS yedQ yedQ shiA shiA ldtA ldtA dacD dacD wzzB wzzB ugd ugd insH1-7 insH1-7 wbbK wbbK wbbJ wbbJ wbbI wbbI wbbH wbbH glf glf wzxB wzxB rfbC rfbC rfbA rfbA rfbD rfbD rfbB rfbB wcaN wcaN wcaM wcaM wcaL wcaL wcaK wcaK wzxC wzxC wcaJ wcaJ cpsG cpsG cpsB cpsB wcaI wcaI wcaH wcaH wcaG wcaG gmd gmd wcaF wcaF wcaE wcaE wcaD wcaD wcaC wcaC wcaB wcaB wcaA wcaA wzc wzc wzb wzb metG metG pbpG pbpG yeiP yeiP lpxT lpxT mepS mepS rplY rplY
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
yejHPutative ATP-dependent DNA or RNA helicase; RadD contains helicase motifs, suggesting it may be a helicase, although that activity has not been observed (Probable). In combination with RadA is important in repair of double-strand DNA breaks (DSB). Has DNA-independent ATPase activity that is stimulated by single-stranded DNA-binding protein SSB. ATPase is stimulated by a peptide with the last 10 residues of SSB, but not when the peptide's last Phe residue is missing. Binds ssDNA; binding is slightly better in the presence of nucleotides. May be involved in resolution of branched DNA int [...] (586 aa)
arnBUridine 5'-(beta-1-threo-pentapyranosyl-4-ulose diphosphate) aminotransferase, PLP-dependent; Catalyzes the conversion of UDP-4-keto-arabinose (UDP-Ara4O) to UDP-4-amino-4-deoxy-L-arabinose (UDP-L-Ara4N). The modified arabinose is attached to lipid A and is required for resistance to polymyxin and cationic antimicrobial peptides. (379 aa)
arnCUndecaprenyl phosphate-L-Ara4FN transferase; Catalyzes the transfer of 4-deoxy-4-formamido-L-arabinose from UDP to undecaprenyl phosphate. The modified arabinose is attached to lipid A and is required for resistance to polymyxin and cationic antimicrobial peptides; Belongs to the glycosyltransferase 2 family. (322 aa)
arnAFused UDP-L-Ara4N formyltransferase/UDP-GlcA C-4'-decarboxylase; Bifunctional enzyme that catalyzes the oxidative decarboxylation of UDP-glucuronic acid (UDP-GlcUA) to UDP-4-keto- arabinose (UDP-Ara4O) and the addition of a formyl group to UDP-4- amino-4-deoxy-L-arabinose (UDP-L-Ara4N) to form UDP-L-4-formamido- arabinose (UDP-L-Ara4FN). The modified arabinose is attached to lipid A and is required for resistance to polymyxin and cationic antimicrobial peptides; In the N-terminal section; belongs to the Fmt family. UDP- L-Ara4N formyltransferase subfamily. (660 aa)
arnDUndecaprenyl phosphate-alpha-L-ara4FN deformylase; Catalyzes the deformylation of 4-deoxy-4-formamido-L- arabinose-phosphoundecaprenol to 4-amino-4-deoxy-L-arabinose- phosphoundecaprenol. The modified arabinose is attached to lipid A and is required for resistance to polymyxin and cationic antimicrobial peptides (Probable). (296 aa)
arnT4-amino-4-deoxy-L-arabinose transferase; Catalyzes the transfer of the L-Ara4N moiety of the glycolipid undecaprenyl phosphate-alpha-L-Ara4N to lipid A. The modified arabinose is attached to lipid A and is required for resistance to polymyxin and cationic antimicrobial peptides. (550 aa)
arnFUndecaprenyl phosphate-alpha-L-ara4N exporter; Translocates 4-amino-4-deoxy-L-arabinose-phosphoundecaprenol (alpha-L-Ara4N-phosphoundecaprenol) from the cytoplasmic to the periplasmic side of the inner membrane; Belongs to the ArnF family. (128 aa)
mepAMurein DD-endopeptidase; Murein endopeptidase that cleaves the D-alanyl-meso-2,6- diamino-pimelyl amide bond that connects peptidoglycan strands. Likely plays a role in the removal of murein from the sacculus and could also play a role in the integration of nascent murein strands into the sacculus. (274 aa)
ypdIPutative lipoprotein involved in colanic acid biosynthesis. (91 aa)
lpxPPalmitoleoyl-acyl carrier protein (ACP)-dependent acyltransferase; Catalyzes the transfer of palmitoleate from palmitoleoyl-acyl carrier protein (ACP) to Kdo(2)-lipid IV(A) to form Kdo(2)- (palmitoleoyl)-lipid IV(A). Required for the biosynthesis of a distinct molecular species of lipid A, which is present only in cells grown at low temperatures. It may confer a selective advantage to cells growing at lower temperatures by making the outer membrane a more effective barrier to harmful chemicals. (306 aa)
gltXglutamyl-tRNA synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu). (471 aa)
hisSHistidine tRNA synthetase; Protein involved in tRNA aminoacylation for protein translation. (424 aa)
rodZMreB assembly cytoskeletal protein; Cytoskeletal protein that is involved in cell-shape control through regulation of the length of the long axis. Belongs to the RodZ family. (337 aa)
pbpCPenicillin-insensitive murein repair transglycosylase; Cell wall formation. The enzyme has a penicillin-insensitive transglycosylase N-terminal domain (formation of linear glycan strands) and a transpeptidase C-terminal domain which may not be functional. (770 aa)
lepABack-translocating elongation factor EF4, GTPase; Required for accurate and efficient protein synthesis under certain stress conditions. May act as a fidelity factor of the translation reaction, by catalyzing a one-codon backward translocation of tRNAs on improperly translocated ribosomes. Back-translocation proceeds from a post-translocation (POST) complex to a pre- translocation (PRE) complex, thus giving elongation factor G a second chance to translocate the tRNAs correctly. Binds to ribosomes in a GTP- dependent manner; Belongs to the TRAFAC class translation factor GTPase superfam [...] (599 aa)
rplS50S ribosomal subunit protein L19; This protein is located at the 30S-50S ribosomal subunit interface. In the 70S ribosome it has been modeled to make two contacts with the 16S rRNA of the 30S subunit forming part of bridges B6 and B8. In the 3.5 A resolved structures L14 and L19 interact and together make contact with the 16S rRNA. The protein conformation is quite different between the 50S and 70S structures, which may be necessary for translocation. (115 aa)
rpsP30S ribosomal subunit protein S16; In addition to being a ribosomal protein, S16 also has a cation-dependent endonuclease activity. (82 aa)
smpBtmRNA-binding trans-translation protein; Required for rescue of stalled ribosomes mediated by trans- translation. Binds to tmRNA RNA (also known as SsrA or 10Sa RNA, 363 nucleotides in this organism), required for stable binding of tmRNA to ribosomes. tmRNA and SmpB together mimic tRNA shape, replacing the anticodon stem-loop with SmpB (Probable). tmRNA is encoded by the ssrA gene; the 2 termini fold to resemble tRNA(Ala) and it encodes a 'tag peptide', a short internal open reading frame. Able to recruit charged tmRNA to ribosomes. Does not play a role in transcription, processing or [...] (160 aa)
alaSalanyl-tRNA synthetase; Catalyzes the attachment of L-alanine to tRNA(Ala) in a two- step reaction: L-alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). AlaRS also incorrectly activates the sterically smaller amino acid glycine as well as the sterically larger amino acid L-serine; generates 2-fold more mischarged Gly than Ser. These mischarged amino acids occur because the of inherent physicochemical limitations on discrimination between closely related amino acids (Ala, Gly and Ser) in the charging step. Attaches Ala to transfer-me [...] (876 aa)
srlQD-arabinose 5-phosphate isomerase; Catalyzes the reversible aldol-ketol isomerization between D- ribulose 5-phosphate (Ru5P) and D-arabinose 5-phosphate (A5P). It appears that the physiological function of G-API may be to synthesize the regulatory molecule A5P, which in turn participates in the induction of the gut operon through an unknown mechanism. It is also able of sustaining the biosynthetic pathway of 3-deoxy-D-manno- octulosonate (KDO), a unique 8-carbon sugar component of lipopolysaccharides (LPSs); Belongs to the SIS family. GutQ/KpsF subfamily. (321 aa)
lgtPhosphatidylglycerol-prolipoprotein diacylglyceryl transferase; Catalyzes the transfer of the diacylglyceryl group from phosphatidylglycerol to the sulfhydryl group of the N-terminal cysteine of a prolipoprotein, the first step in the formation of mature lipoproteins. (291 aa)
lysSLysine tRNA synthetase, constitutive; suppressor of ColE1 mutation in primer RNA; Protein involved in tRNA aminoacylation for protein translation; Belongs to the class-II aminoacyl-tRNA synthetase family. (505 aa)
prfBPeptide chain release factor RF-2; Peptide chain release factor 2 directs the termination of translation in response to the peptide chain termination codons UGA and UAA. Acts as a peptidyl-tRNA hydrolase. In the presence of truncated mRNA in the 70S ribosome, ArfA and RF2 interact such that the GGQ peptide hydrolysis motif of RF2 rises into the peptidyl-transferase center and releases the ribosome. Recruited by ArfA to rescue stalled ribosomes in the absence of a normal stop codon. (365 aa)
hldEHeptose 7-phosphate kinase and heptose 1-phosphate adenyltransferase; Catalyzes the phosphorylation of D-glycero-D-manno-heptose 7- phosphate at the C-1 position to selectively form D-glycero-beta-D- manno-heptose-1,7-bisphosphate; In the N-terminal section; belongs to the carbohydrate kinase PfkB family. (477 aa)
bacAUndecaprenyl pyrophosphate phosphatase; Catalyzes the dephosphorylation of undecaprenyl diphosphate (UPP). Confers resistance to bacitracin; Belongs to the UppP family. (273 aa)
tsaDtRNA(ANN) t(6)A37 threonylcarbamoyladenosine modification protein; Required for the formation of a threonylcarbamoyl group on adenosine at position 37 (t(6)A37) in tRNAs that read codons beginning with adenine. Is probably involved in the transfer of the threonylcarbamoyl moiety of threonylcarbamoyl-AMP (TC-AMP) to the N6 group of A37, together with TsaE and TsaB. TsaD likely plays a direct catalytic role in this reaction. May also be involved in the metabolism of glycated proteins, but does not show sialoglycoprotease activity against glycophorin A. (337 aa)
rpsU30S ribosomal subunit protein S21; Protein involved in structural constituent of ribosome and translation; Belongs to the bacterial ribosomal protein bS21 family. (71 aa)
lpoAOM lipoprotein stimulator of MrcA transpeptidase; Regulator of peptidoglycan synthesis that is essential for the function of penicillin-binding protein 1A (PBP1a). Stimulates transpeptidase activity of PBP1a in vitro. (678 aa)
rpsO30S ribosomal subunit protein S15; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it helps nucleate assembly of the platform of the 30S subunit by binding and bridging several RNA helices of the 16S rRNA. Binds to its own mRNA, stabilizing it 5-UTR and preventing its translation. (89 aa)
infBTranslation initiation factor IF-2; One of the essential components for the initiation of protein synthesis. May protect N-formylmethionyl-tRNA(fMet) from spontaneous hydrolysis. Promotes N-formylmethionyl-tRNA(fMet) binding to the 30S pre-initiation complex (PIC). Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex. Upon addition of the 50S ribosomal subunit, IF-1, IF-2 and IF-3 are released leaving the mature 70S translation initiation complex. Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase fam [...] (890 aa)
rimPRibosome maturation factor for 30S subunits; Required for maturation of 30S ribosomal subunits, probably at a late stage of ribosomal protein binding, while Era is associated and after RimM. (150 aa)
yhbXPutative EptAB family phosphoethanolamine transferase, inner membrane protein; Probably does not transfer phosphoethanolamine to lipid A. Belongs to the phosphoethanolamine transferase family. (541 aa)
glmMPhosphoglucosamine mutase; Catalyzes the conversion of glucosamine-6-phosphate to glucosamine-1-phosphate. Can also catalyze the formation of glucose-6-P from glucose-1-P, although at a 1400-fold lower rate. (445 aa)
dacBD-alanyl-D-alanine carboxypeptidase; Not involved in transpeptidation but exclusively catalyzes a DD-carboxypeptidase and DD-endopeptidase reaction. Belongs to the peptidase S13 family. (477 aa)
rpmA50S ribosomal subunit protein L27; Protein involved in structural constituent of ribosome and translation. (85 aa)
rplU50S ribosomal subunit protein L21; This protein binds to 23S rRNA in the presence of protein L20. (103 aa)
murAUDP-N-acetylglucosamine 1-carboxyvinyltransferase; Cell wall formation. Adds enolpyruvyl to UDP-N-acetylglucosamine. Target for the antibiotic fosfomycin; Belongs to the EPSP synthase family. MurA subfamily. (419 aa)
kdsDD-arabinose 5-phosphate isomerase; Involved in the biosynthesis of 3-deoxy-D-manno-octulosonate (KDO), a unique 8-carbon sugar component of lipopolysaccharides (LPSs). KdsD is not essential in the KDO biosynthesis and can be substituted by GutQ. Catalyzes the reversible aldol-ketol isomerization between D- ribulose 5-phosphate (Ru5P) and D-arabinose 5-phosphate (A5P). (328 aa)
kdsC3-deoxy-D-manno-octulosonate 8-phosphate phosphatase; Catalyzes the hydrolysis of 3-deoxy-D-manno-octulosonate 8- phosphate (KDO 8-P) to 3-deoxy-D-manno-octulosonate (KDO) and inorganic phosphate. (188 aa)
mtgABiosynthetic peptidoglycan transglycosylase; Peptidoglycan polymerase that catalyzes glycan chain elongation from lipid-linked precursors. May play a role in peptidoglycan assembly during cell division in collaboration with other cell division proteins ; Belongs to the glycosyltransferase 51 family. (242 aa)
rpsI30S ribosomal subunit protein S9; The C-terminal tail plays a role in the affinity of the 30S P site for different tRNAs. Mutations that decrease this affinity are suppressed in the 70S ribosome. (130 aa)
rplM50S ribosomal subunit protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly. (142 aa)
mreDCell wall structural complex MreBCD transmembrane component MreD; Involved in formation of the rod shape of the cell. May also contribute to regulation of formation of penicillin-binding proteins; Belongs to the MreD family. (162 aa)
mreCCell wall structural complex MreBCD transmembrane component MreC; Involved in formation and maintenance of cell shape. Responsible for formation of rod shape. May also contribute to regulation of formation of penicillin-binding proteins. Belongs to the MreC family. (367 aa)
mreBCell wall structural complex MreBCD, actin-like component MreB; Forms membrane-associated dynamic filaments that are essential for cell shape determination. Acts by regulating cell wall synthesis and cell elongation, and thus cell shape. A feedback loop between cell geometry and MreB localization maintains elongated cell shape by targeting cell wall growth to regions of negative cell wall curvature. Filaments rotate around the cell circumference in concert with the cell wall synthesis enzymes. The process is driven by the cell wall synthesis machinery and does not depend on MreB polyme [...] (347 aa)
defPeptide deformylase; Removes the formyl group from the N-terminal Met of newly synthesized proteins. Requires at least a dipeptide for an efficient rate of reaction. N-terminal L-methionine is a prerequisite for activity but the enzyme has broad specificity at other positions. (169 aa)
fmt10-formyltetrahydrofolate:L-methionyl-tRNA(fMet) N-formyltransferase; Attaches a formyl group to the free amino group of methionyl- tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus. Belongs to the Fmt family. (315 aa)
rplQ50S ribosomal subunit protein L17; Requires L15 for assembly into the 50S subunit. (127 aa)
rpsD30S ribosomal subunit protein S4; One of two assembly initiator proteins for the 30S subunit, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. Plays a role in mRNA unwinding by the ribosome, possibly by forming part of a processivity clamp. Also functions as a rho-dependent antiterminator of rRNA transcription, increasing the synthesis of rRNA under conditions of excess protein, allowing a more rapid return to homeostasis. Binds directly to RNA polymerase; Belongs to the universal ribosomal protein uS4 family. (206 aa)
rpsK30S ribosomal subunit protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome (By similarity); Belongs to the universal ribosomal protein uS11 family. (129 aa)
rpsM30S ribosomal subunit protein S13; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. Contacts the tRNAs in the A and P sites. Belongs to the universal ribosomal protein uS13 family. (118 aa)
rpmJ50S ribosomal subunit protein L36; Protein involved in structural constituent of ribosome and translation; Belongs to the bacterial ribosomal protein bL36 family. (38 aa)
rplO50S ribosomal subunit protein L15; This protein binds the 5S rRNA. It is required for the late stages of subunit assembly, and is essential for 5S rRNA assembly onto the ribosome; Belongs to the universal ribosomal protein uL15 family. (144 aa)
rpmD50S ribosomal subunit protein L30; Protein involved in structural constituent of ribosome and translation. (59 aa)
rpsE30S ribosomal subunit protein S5; With S4 and S12 plays an important role in translational accuracy. Many suppressors of streptomycin-dependent mutants of protein S12 are found in this protein, some but not all of which decrease translational accuracy (ram, ribosomal ambiguity mutations). The physical location of this protein suggests it may also play a role in mRNA unwinding by the ribosome, possibly by forming part of a processivity clamp. (167 aa)
rplR50S ribosomal subunit protein L18; This is one of the proteins that mediates the attachment of the 5S rRNA subcomplex onto the large ribosomal subunit where it forms part of the central protuberance. Binds stably to 5S rRNA; increases binding abilities of L5 in a cooperative fashion; both proteins together confer 23S rRNA binding. The 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. (117 aa)
rplF50S ribosomal subunit protein L6; This protein binds directly to at least 2 domains of the 23S ribosomal RNA, thus is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center. (177 aa)
rpsH30S ribosomal subunit protein S8; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit; Belongs to the universal ribosomal protein uS8 family. (130 aa)
rpsN30S ribosomal subunit protein S14; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site. (101 aa)
rplE50S ribosomal subunit protein L5; This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. Its 5S rRNA binding is significantly enhanced in the presence of L18. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. (179 aa)
rplX50S ribosomal subunit protein L24; One of two assembly initiator proteins, it binds directly to the 5'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit. It is not thought to be involved in the functions of the mature 50S subunit in vitro; Belongs to the universal ribosomal protein uL24 family. (104 aa)
rplN50S ribosomal subunit protein L14; This protein binds directly to 23S ribosomal RNA. In the E.coli 70S ribosome it has been modeled to make two contacts with the 16S rRNA of the 30S subunit, forming part of bridges B5 and B8, connecting the 2 subunits. Although the protein undergoes significant rotation during the transition from an initiation to and EF-G bound state, the bridges remain stable. In the 3.5 A resolved structures L14 and L19 interact and together make contact with the 16S rRNA in bridges B5 and B8. (123 aa)
rpsQ30S ribosomal subunit protein S17; One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA. Also plays a role in translational accuracy; neamine-resistant ribosomes show reduced neamine-induced misreading in vitro. (84 aa)
rpmC50S ribosomal subunit protein L29; Binds 23S rRNA. It is not essential for growth. (63 aa)
rplP50S ribosomal subunit protein L16; This protein binds directly to 23S ribosomal RNA and is located at the A site of the peptidyltransferase center. It contacts the A and P site tRNAs. It has an essential role in subunit assembly, which is not well understood. (136 aa)
rpsC30S ribosomal subunit protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation (By similarity). Belongs to the universal ribosomal protein uS3 family. (233 aa)
rplV50S ribosomal subunit protein L22; This protein binds specifically to 23S rRNA; its binding is stimulated by other ribosomal proteins, e.g. L4, L17, and L20. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome. (110 aa)
rpsS30S ribosomal subunit protein S19; In the E.coli 70S ribosome in the initiation state it has been modeled to contact the 23S rRNA of the 50S subunit forming part of bridge B1a; this bridge is broken in the model with bound EF-G. The 23S rRNA contact site in bridge B1a is modeled to differ in different ribosomal states , contacting alternately S13 or S19. In the 3.5 angstroms resolved ribosome structures the contacts between L5, S13 and S19 bridge B1b are different, confirming the dynamic nature of this interaction. Bridge B1a is not visible in the crystallized ribosomes due to 23S rR [...] (92 aa)
rplB50S ribosomal subunit protein L2; One of the primary rRNA binding proteins. Located near the base of the L1 stalk, it is probably also mobile. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is highly controversial. Belongs to the universal ribosomal protein uL2 family. (273 aa)
rplW50S ribosomal subunit protein L23; One of the early assembly proteins, it binds 23S rRNA; is essential for growth. One of the proteins that surround the polypeptide exit tunnel on the outside of the subunit. Acts as the docking site for trigger factor for Ffh binding to the ribosome (SRP54, and and to nascent polypeptide chains. Belongs to the universal ribosomal protein uL23 family. (100 aa)
rplD50S ribosomal subunit protein L4; One of the primary rRNA binding proteins, this protein initially binds near the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome. Forms part of the polypeptide exit tunnel. Belongs to the universal ribosomal protein uL4 family. (201 aa)
rplC50S ribosomal subunit protein L3; One of two assembly initiator proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit. (209 aa)
rpsJ30S ribosomal subunit protein S10; Involved in the binding of tRNA to the ribosomes. In addition, in complex with NusB, is involved in the regulation of ribosomal RNA (rRNA) biosynthesis by transcriptional antitermination. S10 binds RNA non-specifically and increases the affinity of NusB for the boxA RNA sequence. S10 may constitute the critical antitermination component of the NusB-S10 complex. Belongs to the universal ribosomal protein uS10 family. (103 aa)
tufATranslation elongation factor EF-Tu 1; This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. Plays a stimulatory role in trans-translation; binds tmRNA. (Microbial infection) Upon infection by bacteriophage Qbeta, part of the viral RNA-dependent RNA polymerase complex. With EF-Ts may provide a stabilizing scaffold for the beta (catalytic) subunit. Helps separate the double-stranded RNA of the template and growing RNA during elongation. With the beta subunit helps form the exit tunnel for template RNA. (Microbial infe [...] (394 aa)
fusAProtein chain elongation factor EF-G, GTP-binding; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase f [...] (704 aa)
rpsG30S ribosomal subunit protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, where it has been shown to contact mRNA. Has been shown to contact tRNA in both the P and E sites; it probably blocks exit of the E site tRNA. (179 aa)
rpsL30S ribosomal subunit protein S12; With S4 and S5 plays an important role in translational accuracy. Cryo-EM studies suggest that S12 contacts the EF-Tu bound tRNA in the A-site during codon-recognition. This contact is most likely broken as the aminoacyl-tRNA moves into the peptidyl transferase center in the 50S subunit; Belongs to the universal ribosomal protein uS12 family. (124 aa)
frlBfructoselysine-6-P-deglycase; Catalyzes the reversible conversion of fructoselysine 6- phosphate to glucose 6-phosphate and lysine. Functions in a fructoselysine degradation pathway that allows E.coli to grow on fructoselysine or psicoselysine. (340 aa)
glgB1,4-alpha-glucan branching enzyme; Catalyzes the formation of the alpha-1,6-glucosidic linkages in glycogen by scission of a 1,4-alpha-linked oligosaccharide from growing alpha-1,4-glucan chains and the subsequent attachment of the oligosaccharide to the alpha-1,6 position; Belongs to the glycosyl hydrolase 13 family. GlgB subfamily. (728 aa)
glgCGlucose-1-phosphate adenylyltransferase; Involved in the biosynthesis of ADP-glucose, a building block required for the elongation reactions to produce glycogen. Catalyzes the reaction between ATP and alpha-D-glucose 1-phosphate (G1P) to produce pyrophosphate and ADP-Glc; Belongs to the bacterial/plant glucose-1-phosphate adenylyltransferase family. (431 aa)
glgAGlycogen synthase; Synthesizes alpha-1,4-glucan chains using ADP-glucose. (477 aa)
yhgFPutative transcriptional accessory protein. (773 aa)
mrcAPenicillin-binding protein 1a, murein transglycosylase and transpeptidase; Cell wall formation. Synthesis of cross-linked peptidoglycan from the lipid intermediates. The enzyme has a penicillin-insensitive transglycosylase N-terminal domain (formation of linear glycan strands) and a penicillin-sensitive transpeptidase C-terminal domain (cross- linking of the peptide subunits); In the N-terminal section; belongs to the glycosyltransferase 51 family. (850 aa)
arfAAlternate ribosome-rescue factor A; Rescues ribosomes stalled at the 3' end of non-stop mRNAs. This activity is crucial when the stalled ribosome cannot be rescued by the SsrA(tmRNA)-SmpB quality control system. Binds the 30S subunit, contacting 16S rRNA with the N-terminus near the decoding center and its C-terminus in the mRNA entry channel; contacts change in the presence of release factor 2 (RF2, also named PrfB). Requires RF2/PrfB to hydrolyze stalled peptidyl-tRNA on the ribosome; recruits and probably helps position RF2/PrfB correctly in the ribosomal A site so RF2's GGQ motif c [...] (72 aa)
arnEUndecaprenyl phosphate-alpha-L-ara4N exporter; Translocates 4-amino-4-deoxy-L-arabinose-phosphoundecaprenol (alpha-L-Ara4N-phosphoundecaprenol) from the cytoplasmic to the periplasmic side of the inner membrane. (111 aa)
ykgORpmJ-like protein. (46 aa)
wecFTDP-Fuc4NAc:lipidIIFuc4NAc transferase; Catalyzes the synthesis of Und-PP-GlcNAc-ManNAcA-Fuc4NAc (Lipid III), the third lipid-linked intermediate involved in ECA synthesis; Belongs to the glycosyltransferase 56 family. (359 aa)
ettAEnergy-dependent translational throttle A; A translation factor that gates the progression of the 70S ribosomal initiation complex (IC, containing tRNA(fMet) in the P-site) into the translation elongation cycle by using a mechanism sensitive to the ATP/ADP ratio. Binds to the 70S ribosome E-site where it modulates the state of the translating ribosome during subunit translocation. Stimulates dipeptide bond synthesis in the presence of ATP (cell in high energy state), but inhibits dipeptide synthesis in the presence of ADP (cell in low energy state), and thus may control translation in [...] (555 aa)
prfCPeptide chain release factor RF-3; Increases the formation of ribosomal termination complexes and stimulates activities of RF-1 and RF-2. It binds guanine nucleotides and has strong preference for UGA stop codons. It may interact directly with the ribosome. The stimulation of RF-1 and RF-2 is significantly reduced by GTP and GDP, but not by GMP. (529 aa)
opgBOPG periplasmic biosynthetic phosphoglycerol transferases I (membrane-bound) and II (soluble); Transfers a phosphoglycerol residue from phosphatidylglycerol to the membrane-bound nascent glucan backbones. Belongs to the OpgB family. (763 aa)
valSvalyl-tRNA synthetase; Catalyzes the attachment of valine to tRNA(Val). As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a 'posttransfer' editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA- dependent manner. (951 aa)
mplUDP-N-acetylmuramate:L-alanyl-gamma-D-glutamyl- meso-diaminopimelate ligase; Reutilizes the intact tripeptide L-alanyl-gamma-D-glutamyl- meso-diaminopimelate by linking it to UDP-N-acetylmuramate. The enzyme can also use the tetrapeptide L-alanyl-gamma-D-glutamyl-meso-2,6- diaminoheptanedioyl-D-alanine or the pentapeptide L-alanyl-gamma-D- glutamyl-meso-2,6-diaminoheptandioyl-D-alanyl-D-alanine in vivo and in vitro; Belongs to the MurCDEF family. Mpl subfamily. (457 aa)
rplI50S ribosomal subunit protein L9; One of the primary rRNA binding proteins, it binds very close to the 3' end of the 23S rRNA; Belongs to the bacterial ribosomal protein bL9 family. (149 aa)
rpsR30S ribosomal subunit protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit; Belongs to the bacterial ribosomal protein bS18 family. (75 aa)
rpsF30S ribosomal subunit protein S6; Binds together with S18 to 16S ribosomal RNA. (131 aa)
hflXGTPase, stimulated by 50S subunit binding; GTPase that associates with the 50S ribosomal subunit and may have a role during protein synthesis or ribosome biogenesis. In vitro, also exhibits ATPase activity. (426 aa)
tsaEtRNA(ANN) t(6)A37 threonylcarbamoyladenosine modification protein; Required for the formation of a threonylcarbamoyl group on adenosine at position 37 (t(6)A37) in tRNAs that read codons beginning with adenine. Is probably involved in the transfer of the threonylcarbamoyl moiety of threonylcarbamoyl-AMP (TC-AMP) to the N6 group of A37, together with TsaD and TsaB. TsaE seems to play an indirect role in the t(6)A biosynthesis pathway, possibly in regulating the core enzymatic function of TsaD. Displays ATPase activity in vitro. (153 aa)
epmAElongation Factor P Lys34 lysyltransferase; With EpmB is involved in the beta-lysylation step of the post-translational modification of translation elongation factor P (EF- P) on 'Lys-34'. Catalyzes the ATP-dependent activation of (R)-beta- lysine produced by EpmB, forming a lysyl-adenylate, from which the beta-lysyl moiety is then transferred to the epsilon-amino group of EF- P 'Lys-34'. The substrate (R)-beta-lysine is 100-fold more efficient than either (S)-beta-lysine or L-alpha-lysine. Cannot ligate lysine to any tRNA. (325 aa)
efpPolyproline-specific translation elongation factor EF-P; Involved in peptide bond synthesis. Alleviates ribosome stalling that occurs when 3 or more consecutive Pro residues or the sequence PPG is present in a protein, possibly by augmenting the peptidyl transferase activity of the ribosome. Beta-lysylation at Lys- 34 is required for alleviation. The Pro codons and their context do not affect activity; only consecutive Pro residues (not another amino acid) are affected by EF-P. Has stimulatory effects on peptide bond formation between ribosome-bound initiator tRNA(fMet) and puromycin, [...] (188 aa)
lysULysine tRNA synthetase, inducible; Also can synthesize a number of adenyl dinucleotides (in particular AppppA). These dinucleotides have been proposed to act as modulators of the heat-shock response and stress response; Belongs to the class-II aminoacyl-tRNA synthetase family. (505 aa)
eptALipid A phosphoethanolamine transferase; Catalyzes the addition of a phosphoethanolamine moiety to the lipid A. The phosphoethanolamine modification is required for resistance to polymyxin; Belongs to the phosphoethanolamine transferase family. EptA subfamily. (547 aa)
alrAlanine racemase, biosynthetic, PLP-binding; Catalyzes the interconversion of L-alanine and D-alanine. Provides the D-alanine required for cell wall biosynthesis. (359 aa)
yjbHDUF940 family extracellular polysaccharide protein. (698 aa)
yjbGExtracellular polysaccharide export OMA protein; To E.coli YmcB. (245 aa)
yjbFExtracellular polysaccharide production lipoprotein. (212 aa)
yjbEExtracellular polysaccharide production threonine-rich protein. (80 aa)
rplL50S ribosomal subunit protein L7/L12; The binding site for several of the GTPase factors involved in protein synthesis (IF-2, EF-Tu, EF-G and RF3). Is thus essential for accurate translation. Deletion of 1 of the L12 dimers from the ribosome (by deleting the binding site on L10) leads to decreased IF-2 association with the 70S ribosome and decreased stimulation of the GTPase activity of EF-G; Belongs to the bacterial ribosomal protein bL12 family. (121 aa)
rplJ50S ribosomal subunit protein L10; Forms part of the ribosomal stalk, playing a central role in the interaction of the ribosome with GTP-bound translation factors. Belongs to the universal ribosomal protein uL10 family. (165 aa)
rplA50S ribosomal subunit protein L1; One of the primary rRNA binding proteins, it binds very close to the 3'-end of the 23S rRNA. Forms part of the L1 stalk. It is often not seen in high-resolution crystal structures, but can be seen in cryo_EM and 3D reconstruction models. These indicate that the distal end of the stalk moves by approximately 20 angstroms. This stalk movement is thought to be coupled to movement of deacylated tRNA into and out of the E site, and thus to participate in tRNA translocation. Contacts the P and E site tRNAs. (234 aa)
rplK50S ribosomal subunit protein L11; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors; Belongs to the universal ribosomal protein uL11 family. (142 aa)
tufBTranslation elongation factor EF-Tu 2; This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. Plays a stimulatory role in trans-translation, binds tmRNA. (Microbial infection) Upon infection by bacteriophage Qbeta, part of the viral RNA-dependent RNA polymerase complex. With EF-Ts may provide a stabilizing scaffold for the beta (catalytic) subunit. Helps separate the double-stranded RNA of the template and growing RNA during elongation. With the beta subunit helps form the exit tunnel for template RNA. The GTPase acti [...] (394 aa)
murBUDP-N-acetylenolpyruvoylglucosamine reductase, FAD-binding; Cell wall formation; Belongs to the MurB family. (342 aa)
murIGlutamate racemase; Provides the (R)-glutamate required for cell wall biosynthesis. Belongs to the aspartate/glutamate racemases family. (285 aa)
eptCLPS heptose I phosphoethanolamine transferase; Catalyzes the addition of a phosphoethanolamine moiety to the outer membrane lipopolysaccharide core; Belongs to the phosphoethanolamine transferase family. EptC/CptA subfamily. (577 aa)
rpmE50S ribosomal subunit protein L31; Binds the 23S rRNA. (70 aa)
wecGUDP-N-acetyl-D-mannosaminuronic acid transferase; Catalyzes the synthesis of Und-PP-GlcNAc-ManNAcA (Lipid II), the second lipid-linked intermediate involved in enterobacterial common antigen (ECA) synthesis. (246 aa)
wzyEPutative ECA polysaccharide chain elongation protein; Probably involved in the polymerization of enterobacterial common antigen (ECA) trisaccharide repeat units. Required for the assembly of the phosphoglyceride-linked form of ECA (ECA(PG)) and the water-soluble cyclic form of ECA (ECA(CYC)). Belongs to the WzyE family. (450 aa)
wzxEO-antigen translocase; Mediates the transbilayer movement of Und-PP-GlcNAc-ManNAcA- Fuc4NAc (lipid III) from the inner to the outer leaflet of the cytoplasmic membrane during the assembly of enterobacterial common antigen (ECA). Required for the assembly of the phosphoglyceride-linked form of ECA (ECA(PG)) and the water-soluble cyclic form of ECA (ECA(CYC)). Could also mediate the translocation of Und-PP-GlcNAc. (416 aa)
wecETDP-4-oxo-6-deoxy-D-glucose transaminase; Catalyzes the synthesis of dTDP-4-amino-4,6-dideoxy-D- galactose (dTDP-Fuc4N) from dTDP-4-keto-6-deoxy-D-glucose (dTDP-D- Glc4O) and L-glutamate. (376 aa)
wecDTDP-fucosamine acetyltransferase; Catalyzes the acetylation of dTDP-fucosamine (dTDP-4-amino- 4,6-dideoxy-D-galactose) to dTDP-Fuc4NAc, which is utilized in the biosynthesis of the enterobacterial common antigen (ECA). Belongs to the WecD family. (224 aa)
rffHGlucose-1-phosphate thymidylyltransferase; Catalyzes the formation of dTDP-glucose, from dTTP and glucose 1-phosphate, as well as its pyrophosphorolysis. Belongs to the glucose-1-phosphate thymidylyltransferase family. (293 aa)
rffGdTDP-glucose 4,6-dehydratase; Catalyzes the dehydration of dTDP-D-glucose to form dTDP-6- deoxy-D-xylo-4-hexulose via a three-step process involving oxidation, dehydration and reduction; Belongs to the NAD(P)-dependent epimerase/dehydratase family. dTDP-glucose dehydratase subfamily. (355 aa)
wecCUDP-N-acetyl-D-mannosaminuronic acid dehydrogenase; Catalyzes the four-electron oxidation of UDP-N-acetyl-D- mannosamine (UDP-ManNAc), reducing NAD(+) and releasing UDP-N- acetylmannosaminuronic acid (UDP-ManNAcA). (420 aa)
wecBUDP-N-acetyl glucosamine-2-epimerase; Catalyzes the reversible epimerization at C-2 of UDP-N- acetylglucosamine (UDP-GlcNAc) and thereby provides bacteria with UDP- N-acetylmannosamine (UDP-ManNAc), the activated donor of ManNAc residues. Also involved in bacteriophage N4 adsorption. (376 aa)
wzzEEntobacterial Common Antigen (ECA) polysaccharide chain length modulation protein; Modulates the polysaccharide chain length of enterobacterial common antigen (ECA). Required for the assembly of the phosphoglyceride-linked form of ECA (ECA(PG)) and the water-soluble cyclic form of ECA (ECA(CYC)). (348 aa)
wecAUDP-GlcNAc:undecaprenylphosphate GlcNAc-1-phosphate transferase; Catalyzes the transfer of the GlcNAc-1-phosphate moiety from UDP-GlcNAc onto the carrier lipid undecaprenyl phosphate (C55-P), yielding GlcNAc-pyrophosphoryl-undecaprenyl (GlcNAc-PP-C55). It is the first lipid-linked intermediate involved in enterobacterial common antigen (ECA) synthesis, and an acceptor for the addition of subsequent sugars to complete the biosynthesis of O-antigen lipopolysaccharide (LPS) in many E.coli O types. The apparent affinity of WecA for the polyisoprenyl phosphate substrates increases with the [...] (367 aa)
glmUFused N-acetyl glucosamine-1-phosphate uridyltransferase/glucosamine-1-phosphate acetyl transferase; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C- terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N- acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5- triphosphate), a reaction catalyzed by the N-terminal domain. (456 aa)
glmSL-glutamine:D-fructose-6-phosphate aminotransferase; Catalyzes the first step in hexosamine metabolism, converting fructose-6P into glucosamine-6P using glutamine as a nitrogen source. (609 aa)
rpmH50S ribosomal subunit protein L34; Protein involved in structural constituent of ribosome and translation; Belongs to the bacterial ribosomal protein bL34 family. (46 aa)
rpmB50S ribosomal subunit protein L28; Protein involved in structural constituent of ribosome and translation. (78 aa)
rpmG50S ribosomal subunit protein L33; Protein involved in structural constituent of ribosome and translation. (55 aa)
waaA3-deoxy-D-manno-octulosonic-acid transferase (KDO transferase); Involved in lipopolysaccharide (LPS) biosynthesis. Catalyzes the transfer of two 3-deoxy-D-manno-octulosonate (Kdo) residues from CMP-Kdo to lipid IV(A), the tetraacyldisaccharide-1,4'-bisphosphate precursor of lipid A; Belongs to the glycosyltransferase group 1 family. Glycosyltransferase 30 subfamily. (425 aa)
waaQLipopolysaccharide core biosynthesis protein; Catalyzes heptose transfer to the lipopolysaccharide core. It transfers a heptose, called heptose(III), to the heptose(II) of the inner core (By similarity); Belongs to the glycosyltransferase 9 family. (344 aa)
waaGUDP-glucose:(heptosyl)lipopolysaccharide alpha-1,3-glucosyltransferase; Involved in the addition of the first glucose residue to the lipopolysaccharide core; Belongs to the glycosyltransferase group 1 family. Glycosyltransferase 4 subfamily. (374 aa)
waaPKinase that phosphorylates core heptose of lipopolysaccharide; Catalyzes the phosphorylation of heptose(I) of the outer membrane lipopolysaccharide core. (265 aa)
waaSLipopolysaccharide rhamnose:KdoIII transferase; Lipopolysaccharide core biosynthesis; Protein involved in cell surface antigen activity, host-interacting and lipopolysaccharide core region biosynthetic process. (311 aa)
waaBLipopolysaccharide 1,6-galactosyltransferase; Adds a galactose goup to a glucose group of LPS; Belongs to the glycosyltransferase group 1 family. Glycosyltransferase 4 subfamily. (359 aa)
waaOUDP-D-galactose:(glucosyl)lipopolysaccharide- alpha-1,3-D-galactosyltransferase; Protein involved in cell surface antigen activity, host-interacting; Belongs to the glycosyltransferase 8 family. (339 aa)
waaRLipopolysaccharide 1,2-glucosyltransferase; Adds the glucose(II) group on the galactose(I) group of LPS. (338 aa)
waaYLipopolysaccharide core biosynthesis protein; Catalyzes the phosphorylation of heptose(II) of the outer membrane lipopolysaccharide core; Belongs to the protein kinase superfamily. RfaY/WaaY family. (232 aa)
waaZLipopolysaccharide KdoIII transferase; Lipopolysaccharide core biosynthesis; Protein involved in cell surface antigen activity, host-interacting and lipopolysaccharide core region biosynthetic process. (283 aa)
waaULipopolysaccharide core biosynthesis; Adds the terminal N-acetyl-D-glucosamine group on the glucose(II) group of LPS. (357 aa)
waaLO-antigen ligase; Adds the O-antigen on the glucose group of LPS. (419 aa)
waaCADP-heptose:LPS heptosyl transferase I; Heptose transfer to the lipopolysaccharide core. It transfers the innermost heptose to [4'-P](3-deoxy-D-manno-octulosonic acid)2-IVA; Belongs to the glycosyltransferase 9 family. (319 aa)
waaFADP-heptose--lps heptosyltransferase II; lipopolysaccharide core biosynthesis; Protein involved in cell surface antigen activity, host-interacting and lipopolysaccharide core region biosynthetic process. (348 aa)
hldDADP-L-glycero-D-mannoheptose-6-epimerase, NAD(P)-binding; Catalyzes the interconversion between ADP-D-glycero-beta-D- manno-heptose and ADP-L-glycero-beta-D-manno-heptose via an epimerization at carbon 6 of the heptose; Belongs to the NAD(P)-dependent epimerase/dehydratase family. HldD subfamily. (310 aa)
selASelenocysteine synthase; Converts seryl-tRNA(Sec) to selenocysteinyl-tRNA(Sec) required for selenoprotein biosynthesis. Requires selenophosphate as the selenium-donor molecule; Belongs to the SelA family. (463 aa)
selBselenocysteinyl-tRNA-specific translation factor; Translation factor necessary for the incorporation of selenocysteine into proteins. It probably replaces EF-Tu for the insertion of selenocysteine directed by the UGA codon. SelB binds GTP and GDP; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. SelB subfamily. (614 aa)
yiaTPutative outer membrane protein YiaT; Pseudogene, internal sequence remnant. (246 aa)
wecHO-acetyltransferase for enterobacterial common antigen (ECA); Responsible for the incorporation of O-acetyl groups into the enterobacterial common antigen (ECA) trisaccharide repeat units. Catalyzes the acetylation of both cyclic ECA (ECA(CYC)) and phosphoglyceride-linked ECA (ECA(PG)); Belongs to the acyltransferase 3 family. (331 aa)
glyQGlycine tRNA synthetase, alpha subunit; Protein involved in tRNA aminoacylation for protein translation; Belongs to the class-II aminoacyl-tRNA synthetase family. (303 aa)
glySGlycine tRNA synthetase, beta subunit; Protein involved in tRNA aminoacylation for protein translation; Belongs to the class-II aminoacyl-tRNA synthetase family. (689 aa)
eptBKDO phosphoethanolamine transferase, Ca(2+)-inducible; Catalyzes the addition of a phosphoethanolamine (pEtN) moiety to the outer 3-deoxy-D-manno-octulosonic acid (Kdo) residue of a Kdo(2)-lipid A. Phosphatidylethanolamines with one unsaturated acyl group functions as pEtN donors and the reaction releases diacylglycerol; Belongs to the phosphoethanolamine transferase family. EptB subfamily. (563 aa)
bcsGDUF3260 family cellulose production inner membrane protein. (559 aa)
bcsFDUF2636 family cellulose production small membrane protein. (63 aa)
bcsECellulose production protein; Binds bis-(3'-5') cyclic diguanylic acid (c-di-GMP), the ability to bind c-di-GMP is important for its function ; Belongs to the BcsE family. (523 aa)
yhjRProtein YhjR; Involved in cellulose production, minD superfamily (pseudogene). (62 aa)
bcsACellulose synthase, catalytic subunit; Catalytic subunit of cellulose synthase. It polymerizes uridine 5'-diphosphate glucose to cellulose, which is produced as an extracellular component for mechanical and chemical protection at the onset of the stationary phase, when the cells exhibit multicellular behavior (rdar morphotype). Coexpression of cellulose and thin aggregative fimbriae (curli fimbrae or fibers) leads to a hydrophobic network with tightly packed cells embedded in a highly inert matrix that confers cohesion, elasticity and tissue-like properties to colonies ; Belongs to the [...] (872 aa)
trpStryptophanyl-tRNA synthetase; Catalyzes the attachment of tryptophan to tRNA(Trp). Amino acylates tRNA(Trp) with both L- and D-tryptophan, although D-tryptophan is a poor substrate ; Belongs to the class-I aminoacyl-tRNA synthetase family. (334 aa)
bcsBRegulator of cellulose synthase, cyclic di-GMP binding; Binds the cellulose synthase activator, bis-(3'-5') cyclic diguanylic acid (c-di-GMP). (779 aa)
bcsCCellulose synthase subunit; Required for maximal bacterial cellulose synthesis. (1157 aa)
rpsT30S ribosomal subunit protein S20; Binds directly to 16S ribosomal RNA. (87 aa)
ileSisoleucyl-tRNA synthetase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). (938 aa)
lspAProlipoprotein signal peptidase (signal peptidase II); This protein specifically catalyzes the removal of signal peptides from prolipoproteins. (164 aa)
ftsITranspeptidase involved in septal peptidoglycan synthesis; Essential cell division protein that catalyzes cross-linking of the peptidoglycan cell wall at the division septum. Required for localization of FtsN. Belongs to the transpeptidase family. FtsI subfamily. (588 aa)
murEUDP-N-acetylmuramoyl-L-alanyl-D-glutamate:meso- diaminopimelate ligase; Catalyzes the addition of meso-diaminopimelic acid to the nucleotide precursor UDP-N-acetylmuramoyl-L-alanyl-D-glutamate (UMAG) in the biosynthesis of bacterial cell-wall peptidoglycan. Is also able to use many meso-diaminopimelate analogs as substrates, although much less efficiently, but not L-lysine. (495 aa)
murFUDP-N-acetylmuramoyl-tripeptide:D-alanyl-D- alanine ligase; Involved in cell wall formation. Catalyzes the final step in the synthesis of UDP-N-acetylmuramoyl-pentapeptide, the precursor of murein. (452 aa)
mraYphospho-N-acetylmuramoyl-pentapeptide transferase; First step of the lipid cycle reactions in the biosynthesis of the cell wall peptidoglycan. (360 aa)
murDUDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase; Cell wall formation. Catalyzes the addition of glutamate to the nucleotide precursor UDP-N-acetylmuramoyl-L-alanine (UMA). (438 aa)
ftsWPutative lipid II flippase; Peptidoglycan polymerase that is essential for cell division (Probable). Functions probably in conjunction with the penicillin- binding protein 3 (ftsI). Required for localization of FtsI. (414 aa)
murGN-acetylglucosaminyl transferase; Cell wall formation. Catalyzes the transfer of a GlcNAc subunit on undecaprenyl-pyrophosphoryl-MurNAc-pentapeptide (lipid intermediate I) to form undecaprenyl-pyrophosphoryl-MurNAc- (pentapeptide)GlcNAc (lipid intermediate II). (355 aa)
murCUDP-N-acetylmuramate:L-alanine ligase; Cell wall formation; Belongs to the MurCDEF family. (491 aa)
ddlBD-alanine:D-alanine ligase; Cell wall formation; Belongs to the D-alanine--D-alanine ligase family. (306 aa)
gluQglutamyl-Q tRNA(Asp) synthetase; Catalyzes the tRNA-independent activation of glutamate in presence of ATP and the subsequent transfer of glutamate onto tRNA(Asp). Glutamate is transferred on the 2-amino-5-(4,5-dihydroxy-2- cyclopenten-1-yl) moiety of the queuosine in position 34 of the tRNA(Asp), the wobble position of the QUC anticodon. Does not transfer glutamate to either tRNA(Glu) or tRNA(Gln). The incapacity of the glutamylated tRNA(Asp) to bind elongation factor Tu suggests that it is not involved in ribosomal protein biosynthesis. (308 aa)
mrcBFused glycosyl transferase and transpeptidase; Cell wall formation. Synthesis of cross-linked peptidoglycan from the lipid intermediates. The enzyme has a penicillin-insensitive transglycosylase N-terminal domain (formation of linear glycan strands) and a penicillin-sensitive transpeptidase C-terminal domain (cross- linking of the peptide subunits); In the N-terminal section; belongs to the glycosyltransferase 51 family. (844 aa)
rpsB30S ribosomal subunit protein S2; Required for ribosomal protein S1 to bind to the 30S subunit. (241 aa)
tsfTranslation elongation factor EF-Ts; Associates with the EF-Tu.GDP complex and induces the exchange of GDP to GTP. It remains bound to the aminoacyl-tRNA.EF- Tu.GTP complex up to the GTP hydrolysis stage on the ribosome. (Microbial infection) Promotes the tRNase activity of CdiA-CT from E.coli strain EC869 (CdiA-CT-EC869); required in vivo but less so in vitro. Probably loads charged tRNA onto EF-Tu, making more ternary GTP-EF-Tu-aa-tRNA complexes. The guanine nucleotide exchange factor capacity of this protein does not seem to be needed as no GTP hydrolysis occurs during tRNA cleavag [...] (283 aa)
frrRibosome recycling factor; Responsible for the release of ribosomes from messenger RNA at the termination of protein biosynthesis. May increase the efficiency of translation by recycling ribosomes from one round of translation to another. (185 aa)
ispUUndecaprenyl pyrophosphate synthase; Generates ditrans,octacis-undecaprenyl pyrophosphate (UPP) from isopentenyl pyrophosphate (IPP) and farnesyl diphosphate (FPP). UPP is the precursor of glycosyl carrier lipid in the biosynthesis of bacterial cell wall polysaccharide components such as peptidoglycan and lipopolysaccharide; Belongs to the UPP synthase family. (253 aa)
arfBAlternative stalled-ribosome rescue factor B; Rescues stalled ribosomes. Can hydrolyze peptidyl-tRNA on ribosomes stalled by both non-stop mRNAs and mRNAs that contain rare codon clusters or ribosomes stalled in the middle of mRNA. First identified as a complementary ribosome rescue system when the stalled ribosome cannot be rescued by the SsrA(tmRNA)- SmpB quality control system or the alternative ribosome-rescue factor A (arfA). (140 aa)
proSprolyl-tRNA synthetase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). As ProRS can inadvertently accommodate and process non-cognate amino acids such as alanine and cysteine, to avoid such errors it has two additional distinct editing activities against alanine. One activity is designated as 'pretransfer' editing and involves the tRNA(Pro)-independent hydrolysis of activated Ala-AMP. The other activity is designated 'posttransfer' editing and involves dea [...] (572 aa)
gmhBD,D-heptose 1,7-bisphosphate phosphatase; Converts the D-glycero-beta-D-manno-heptose 1,7-bisphosphate (beta-HBP) intermediate into D-glycero-beta-D-manno-heptose 1-phosphate by removing the phosphate group at the C-7 position. (191 aa)
gmhAD-sedoheptulose 7-phosphate isomerase; Catalyzes the isomerization of sedoheptulose 7-phosphate in D-glycero-D-manno-heptose 7-phosphate; Belongs to the SIS family. GmhA subfamily. (192 aa)
yafKL,D-transpeptidase-related protein. (246 aa)
yafQmRNA interferase toxin of toxin-antitoxin pair YafQ/DinJ; Toxic component of a type II toxin-antitoxin (TA) system. A sequence-specific mRNA endoribonuclease that inhibits translation elongation and induces bacterial stasis. Cleavage occurs between the second and third residue of the Lys codon followed by a G or A (5'AAA(G/A)3'), is reading-frame dependent and occurs within the 5' end of most mRNAs. Ribosome-binding confers the sequence specificity and reading frame- dependence. When overexpressed in liquid media YafQ partially inhibits protein synthesis, with a reduction in growth rat [...] (92 aa)
pepDCytosol non-specific dipeptidase; Dipeptidase with broad substrate specificity. Requires dipeptide substrates with an unblocked N-terminus and the amino group in the alpha or beta position. Non-protein amino acids and proline are not accepted in the C-terminal position, whereas some dipeptide amides and formyl amino acids are hydrolyzed. Also shows cysteinylglycinase activity, which is sufficient for E.coli to utilize cysteinylglycine as a cysteine source. (485 aa)
ykgM50S ribosomal protein L31 type B; alternative zinc-limitation L31 protein. (87 aa)
ddlAD-alanine-D-alanine ligase A; Cell wall formation. (364 aa)
ybaKCys-tRNA(Pro)/Cys-tRNA(Cys) deacylase; Functions in trans to edit the amino acid from incorrectly charged Cys-tRNA(Pro) via a Cys-tRNA(Pro) deacylase activity. May compensate for the lack of Cys-tRNA(Pro) editing by ProRS. Is also able to deacylate Cys-tRNA(Cys), and displays weak deacylase activity in vitro against Gly-tRNA(Gly), as well as, at higher concentrations, some other correctly charged tRNAs. Unlike some of its orthologs it is not able to remove the amino acid moiety from incorrectly charged Ala- tRNA(Pro); Belongs to the prolyl-tRNA editing family. YbaK/EbsC subfamily. (159 aa)
cysSCysteine tRNA synthetase; Protein involved in tRNA aminoacylation for protein translation; Belongs to the class-I aminoacyl-tRNA synthetase family. (461 aa)
ybcJRibosome-associated protein; Its structure and the presence of conserved basic residues indicates that it probably binds RNA. (70 aa)
cusCCopper/silver efflux system, outer membrane component; Forms pores that allow passive diffusion of cations across the outer membrane. Part of a cation efflux system that mediates resistance to copper and silver. In pathogenic strains it allows the bacteria to invade brain microvascular endothelial cells (BMEC) thus allowing it to cross the blood-brain barrier and cause neonatal meningitis. (457 aa)
fepERegulator of length of O-antigen component of lipopolysaccharide chains; Part of the ferric enterobactin transport system. (377 aa)
dacAD-alanyl-D-alanine carboxypeptidase (penicillin-binding protein 5); Removes C-terminal D-alanyl residues from sugar-peptide cell wall precursors. (403 aa)
mrdBCell wall shape-determining protein; Peptidoglycan polymerase that is essential for cell wall elongation. Also required for the maintenance of the rod cell shape. Functions probably in conjunction with the penicillin-binding protein 2 (mrdA). (370 aa)
mrdAPenicillin-binding protein 2, transpeptidase involved in peptidoglycan synthesis; Catalyzes cross-linking of the peptidoglycan cell wall. Responsible for the determination of the rod shape of the cell. Is probably required for lateral peptidoglycan synthesis and maintenance of the correct diameter during lateral and centripetal growth. Belongs to the transpeptidase family. MrdA subfamily. (633 aa)
leuSLeucine tRNA synthetase; Protein involved in tRNA aminoacylation for protein translation; Belongs to the class-I aminoacyl-tRNA synthetase family. (860 aa)
lntApolipoprotein N-acyltransferase; Catalyzes the phospholipid dependent N-acylation of the N- terminal cysteine of apolipoprotein, the last step in lipoprotein maturation. Utilizes a two-step reaction via a ping-pong mechanism. Lnt undergoes covalent modification in the presence of phospholipids, resulting in a thioester acyl-enzyme intermediate. It then transfers the acyl chain to the amine group of the N-terminal diacylglyceryl-modified cysteine of apolipoprotein, leading to the formation of mature triacylated lipoprotein. In vitro, can utilize the phospholipids phosphatidylethanolami [...] (512 aa)
ybeYssRNA-specific endoribonuclease; Single strand-specific metallo-endoribonuclease involved in late-stage 70S ribosome quality control and in maturation of the 3' terminus of the 16S rRNA. Acts together with the RNase R to eliminate defective 70S ribosomes, but not properly matured 70S ribosomes or individual subunits, by a process mediated specifically by the 30S ribosomal subunit. Involved in the processing of 16S, 23S and 5S rRNAs, with a particularly strong effect on maturation at both the 5'- and 3'- ends of 16S rRNA as well as maturation of the 5'-end of 23S and 5S rRNAs. (155 aa)
glnSGlutamine tRNA synthetase; Protein involved in tRNA aminoacylation for protein translation. (554 aa)
galEUDP-galactose-4-epimerase; Involved in the metabolism of galactose. Catalyzes the conversion of UDP-galactose (UDP-Gal) to UDP-glucose (UDP-Glc) through a mechanism involving the transient reduction of NAD. It is only active on UDP-galactose and UDP-glucose. (338 aa)
mcbAColanic acid mucoidy stimulation protein; Affects biofilm formation and mucoidy. (86 aa)
opgEOPG biosynthetic transmembrane phosphoethanolamine transferase; Catalyzes the addition of a phosphoethanolamine moiety to the osmoregulated periplasmic glucan (OPG) backbone. (527 aa)
ldtBL,D-transpeptidase linking Lpp to murein; Responsible, at least in part, for anchoring of the major outer membrane lipoprotein (Lpp, also known as the Braun lipoprotein) to the peptidoglycan via a meso-diaminopimelyl-L-Lys- bond on the terminal residue of Lpp. Can be oxidized in vivo, its reduction depends preferentially on DsbG, although DsbC is able to partially replace DsbG; Belongs to the YkuD family. (306 aa)
dacCD-alanyl-D-alanine carboxypeptidase; Removes C-terminal D-alanyl residues from sugar-peptide cell wall precursors. (400 aa)
ybjGUndecaprenyl pyrophosphate phosphatase; Overexpression leads to increased undecaprenyl diphosphatase activity and to increased resistance to bacitracin. May have a preferred substrate other than undecaprenyl diphosphate in vivo. (198 aa)
rimKRibosomal protein S6 modification protein; Is an L-glutamate ligase that catalyzes the ATP-dependent post-translational addition of glutamate residues to the C-terminus of ribosomal protein S6 (RpsF). Is also able to catalyze the synthesis of poly-alpha-glutamate in vitro, via ATP hydrolysis from unprotected glutamate as substrate. The number of glutamate residues added to either RpsF or to poly-alpha-glutamate changes with pH. Belongs to the RimK family. (300 aa)
infATranslation initiation factor IF-1; One of the essential components for the initiation of protein synthesis. Binds in the vicinity of the A-site. Stabilizes the binding of IF-2 and IF-3 on the 30S subunit to which N-formylmethionyl- tRNA(fMet) subsequently binds. Helps modulate mRNA selection, yielding the 30S pre-initiation complex (PIC). Upon addition of the 50S ribosomal subunit, IF-1, IF-2 and IF-3 are released leaving the mature 70S translation initiation complex. (72 aa)
serSseryl-tRNA synthetase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L- seryl-tRNA(Sec), which will be further converted into selenocysteinyl- tRNA(Sec). (430 aa)
rpsA30S ribosomal subunit protein S1; Required for translation of most natural mRNAs except for leaderless mRNA. Binds mRNA upstream of the Shine- Dalgarno (SD) sequence and helps it bind to the 30S ribosomal subunit; acts as an RNA chaperone to unfold structured mRNA on the ribosome but is not essential for mRNAs with strong SDs and little 5'-UTR structure, thus it may help fine-tune which mRNAs that are translated. Unwinds dsRNA by binding to transiently formed ssRNA regions; binds about 10 nucleotides. Has a preference for polypyrimidine tracts. Negatively autoregulates its own translat [...] (557 aa)
lpxKLipid A 4'kinase; Transfers the gamma-phosphate of ATP to the 4'-position of a tetraacyldisaccharide 1-phosphate intermediate (termed DS-1-P) to form tetraacyldisaccharide 1,4'-bis-phosphate (lipid IVA). (328 aa)
kdsB3-deoxy-manno-octulosonate cytidylyltransferase; Activates KDO (a required 8-carbon sugar) for incorporation into bacterial lipopolysaccharide in Gram-negative bacteria. (248 aa)
ldtDMurein L,D-transpeptidase; Responsible, at least in part, for generating a meso- diaminopimelyl-3-a meso-diaminopimelyl-3 cross-link. Belongs to the YkuD family. (615 aa)
asnSAsparagine tRNA synthetase; Protein involved in tRNA aminoacylation for protein translation. (466 aa)
etkTyrosine-protein kinase, role in O-antigen capsule formation; Protein involved in protein modification process; Belongs to the etk/wzc family. (726 aa)
opgCOPG biosynthetic transmembrane succinyltransferase; Necessary for the succinyl substitution of periplasmic glucans. Could catalyze the transfer of succinyl residues from the cytoplasmic side of the membrane to the nascent glucan backbones on the periplasmic side of the membrane. (385 aa)
opgGOPG biosynthetic periplasmic beta-1,6 branching glycosyltransferase; Involved in the biosynthesis of osmoregulated periplasmic glucans (OPGs); Belongs to the OpgD/OpgG family. (511 aa)
opgHOPG biosynthetic ACP-dependent transmembrane UDP-glucose beta-1,2 glycosyltransferase; Involved in the biosynthesis of osmoregulated periplasmic glucans (OPGs). (847 aa)
lpxLLauryl-acyl carrier protein (ACP)-dependent acyltransferase; Catalyzes the transfer of laurate from lauroyl-acyl carrier protein (ACP) to Kdo(2)-lipid IV(A) to form Kdo(2)-(lauroyl)-lipid IV(A). Has 10 fold selectivity for lauroyl-ACP over myristoyl-ACP. In vitro, can also catalyze a slow second acylation reaction leading to the formation of Kdo(2)-(dilauroyl)-lipid IV(A). (306 aa)
murJPutative lipid II flippase; Involved in peptidoglycan biosynthesis. Transports lipid- linked peptidoglycan precursors from the inner to the outer leaflet of the cytoplasmic membrane. Belongs to the MurJ/MviN family. (511 aa)
rpmF50S ribosomal subunit protein L32; Protein involved in structural constituent of ribosome and translation. (57 aa)
yceGSeptation protein, ampicillin sensitivity; Functions as a peptidoglycan terminase that cleaves nascent peptidoglycan strands endolytically to terminate their elongation. Belongs to the transglycosylase MltG family. (340 aa)
lpoBOM lipoprotein stimulator of MrcB transpeptidase; Regulator of peptidoglycan synthesis that is essential for the function of penicillin-binding protein 1B (PBP1b). Stimulates transpeptidase and transglycosylase activities of PBP1b in vitro. May also contribute to outer membrane constriction during cell division, in complex with PBP1b. (213 aa)
nagZBeta N-acetyl-glucosaminidase; Plays a role in peptidoglycan recycling by cleaving the terminal beta-1,4-linked N-acetylglucosamine (GlcNAc) from peptide- linked peptidoglycan fragments, giving rise to free GlcNAc, anhydro-N- acetylmuramic acid and anhydro-N-acetylmuramic acid-linked peptides. Cleaves GlcNAc linked beta-1,4 to MurNAc tripeptides. (341 aa)
ldtCL,D-transpeptidase linking Lpp to murein; Responsible, at least in part, for anchoring of the major outer membrane lipoprotein (Lpp, also known as the Braun lipoprotein) to the peptidoglycan via a meso-diaminopimelyl-L-Lys- bond on the terminal residue of Lpp. (320 aa)
ldcAMurein tetrapeptide carboxypeptidase; Releases the terminal D-alanine residue from the cytoplasmic tetrapeptide recycling product L-Ala-gamma-D-Glu-meso-Dap-D-Ala. To a lesser extent, can also cleave D-Ala from murein derivatives containing the tetrapeptide, i.e. MurNAc-tetrapeptide, UDP-MurNAc-tetrapeptide, GlcNAc-MurNAc-tetrapeptide, and GlcNAc-anhMurNAc-tetrapeptide. Does not act on murein sacculi or cross-linked muropeptides. The tripeptides produced by the LcdA reaction can then be reused as peptidoglycan building blocks; LcdA is thereby involved in murein recycling. Is also essen [...] (304 aa)
pthpeptidyl-tRNA hydrolase; The natural substrate for this enzyme may be peptidyl-tRNAs which drop off the ribosome during protein synthesis. Involved in lambda inhibition of host protein synthesis. PTH activity may, directly or indirectly, be the target for lambda bar RNA leading to rap cell death. (194 aa)
prfAPeptide chain release factor RF-1; Peptide chain release factor 1 directs the termination of translation in response to the peptide chain termination codons UAG and UAA. (360 aa)
prmCRF-1 and RF-2 N5-glutamine methyltransferase; Methylates the class 1 translation termination release factors RF1/PrfA and RF2/PrfB on the glutamine residue of the universally conserved GGQ motif, i.e. on 'Gln-235' in RF1 and on 'Gln- 252' in RF2; Belongs to the protein N5-glutamine methyltransferase family. PrmC subfamily. (277 aa)
kdsA3-deoxy-D-manno-octulosonate 8-phosphate synthase; Synthesis of KDO 8-P which is required for lipid A maturation and cellular growth. (284 aa)
galUGlucose-1-phosphate uridylyltransferase; May play a role in stationary phase survival; Belongs to the UDPGP type 2 family. (302 aa)
pgpBPhosphatidylglycerophosphatase B; Catalyzes the dephosphorylation of diacylglycerol diphosphate (DGPP) to phosphatidate (PA) and the subsequent dephosphorylation of PA to diacylglycerol (DAG). Also has undecaprenyl pyrophosphate phosphatase activity, required for the biosynthesis of the lipid carrier undecaprenyl phosphate. Can also use lysophosphatidic acid (LPA) and phosphatidylglycerophosphate as substrates. The pattern of activities varies according to subcellular location, PGP phosphatase activity is higher in the cytoplasmic membrane, whereas PA and LPA phosphatase activities are [...] (254 aa)
yciHInitiation factor function partial mimic, SUI1 family; Belongs to the SUI1 family. (108 aa)
opgDOPG biosynthetic periplasmic protein; Probably involved in the control of the structural glucose backbone of osmoregulated periplasmic glucans (OPGs). (551 aa)
sraStationary-phase-induced ribosome-associated protein; Although this protein associates with the 30S subunit of the ribosome it is not considered to be a bona fide ribosomal protein. Belongs to the SRA family. (45 aa)
manAMannose-6-phosphate isomerase; Involved in the conversion of glucose to GDP-L-fucose, which can be converted to L-fucose, a capsular polysaccharide. (391 aa)
tyrStyrosyl-tRNA synthetase; Catalyzes the attachment of L-tyrosine to tRNA(Tyr) in a two- step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr). Can also mischarge tRNA(Tyr) with D-tyrosine, leading to the formation of D-tyrosyl-tRNA(Tyr), which can be hydrolyzed by the D-aminoacyl-tRNA deacylase. In vitro, can also use the non-natural amino acid azatyrosine. (424 aa)
mepHMurein DD-endopeptidase, space-maker hydrolase; A murein DD-endopeptidase with specificity for D-Ala-meso- diaminopimelic acid (mDAP) cross-links. Its role is probably to cleave D-Ala-mDAP cross-links to allow insertion of new glycans and thus cell wall expansion. Functionally redundant with MepM and MepH. Partially suppresses an mepS disruption mutant. (271 aa)
ldtEMurein L,D-transpeptidase; Responsible, at least in part, for generating a meso- diaminopimelyl-3-a meso-diaminopimelyl-3 cross-link. (334 aa)
pheTPhenylalanine tRNA synthetase, beta-subunit; Protein involved in tRNA aminoacylation for protein translation. (795 aa)
pheSPhenylalanine tRNA synthetase, alpha-subunit; Protein involved in tRNA aminoacylation for protein translation. (327 aa)
rplT50S ribosomal subunit protein L20; One of the primary rRNA binding proteins, it binds close to the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly. (118 aa)
rpmI50S ribosomal subunit protein A; Protein involved in structural constituent of ribosome and translation; Belongs to the bacterial ribosomal protein bL35 family. (65 aa)
infCTranslation initiation factor IF-3; One of the essential components for the initiation of protein synthesis.IF-3 binds to the 30S ribosomal subunit and shifts the equilibrum between 70S ribosomes and their 50S and 30S subunits in favor of the free subunits, thus enhancing the availability of 30S subunits on which protein synthesis initiation begins. (180 aa)
thrSthreonyl-tRNA synthetase; Catalyzes the attachment of threonine to tRNA(Thr) in a two- step reaction: L-threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr). The rate-limiting step is amino acid activation in the presence of tRNA. The 2'-OH of the acceptor base (adenine 76, A76) of tRNA(Thr) and His-309 collaborate to transfer L-Thr to the tRNA; substitution of 2'-OH of A76 with hydrogen or fluorine decreases transfer efficiency 760 and 100-fold respectively. The zinc ion in the active site discriminates against charging of the isost [...] (642 aa)
mipAScaffolding protein for murein synthesizing machinery; May serve as a scaffold protein required for the formation of a complex with MrcB/PonB and MltA, this complex could play a role in enlargement and septation of the murein sacculus. (248 aa)
tsaBtRNA(ANN) t(6)A37 threonylcarbamoyladenosine modification protein; Required for the formation of a threonylcarbamoyl group on adenosine at position 37 (t(6)A37) in tRNAs that read codons beginning with adenine. Is probably involved in the transfer of the threonylcarbamoyl moiety of threonylcarbamoyl-AMP (TC-AMP) to the N6 group of A37, together with TsaD and TsaE. TsaB seems to play an indirect role in the t(6)A biosynthesis pathway, possibly in regulating the core enzymatic function of TsaD. In fact, can act as a protease that specifically degrades TsaD in vitro; therefore TsaB may po [...] (231 aa)
lpxMMyristoyl-acyl carrier protein (ACP)-dependent acyltransferase; Catalyzes the transfer of myristate from myristoyl-acyl carrier protein (ACP) to Kdo(2)-(lauroyl)-lipid IV(A) to form Kdo(2)- lipid A. Can probably also catalyze the transfer of myristate to Kdo(2)-(palmitoleoyl)-lipid IV(A) to form the cold-adapted Kdo(2)-lipid A. In vitro, can acylate Kdo(2)-lipid IV(A), but acylation of (KDO)2- (lauroyl)-lipid IV(A) is about 100 times faster. In vitro, can use lauroyl-ACP but displays a slight kinetic preference for myristoyl-ACP. (323 aa)
mepMMurein DD-endopeptidase, space-maker hydrolase, septation protein; A murein DD-endopeptidase with specificity for D-Ala-meso- diaminopimelic acid (mDAP) cross-links. Its role is probably to cleave D-Ala-mDAP cross-links to allow insertion of new glycans and thus cell wall expansion. Functionally redundant with MepM and MepH. Partially suppresses an mepS disruption mutant. (440 aa)
aspSaspartyl-tRNA synthetase; Catalyzes the attachment of L-aspartate to tRNA(Asp) in a two-step reaction: L-aspartate is first activated by ATP to form Asp- AMP and then transferred to the acceptor end of tRNA(Asp). Also mischarges tRNA(Asp) with D-aspartate, although it is a poor substrate ; Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. (590 aa)
argSArginine tRNA synthetase; Protein involved in tRNA aminoacylation for protein translation. (577 aa)
yedQPutative membrane-anchored diguanylate cyclase; Catalyzes the synthesis of cyclic-di-GMP (c-di-GMP) via the condensation of 2 GTP molecules (By similarity). Cyclic-di-GMP is a second messenger which controls cell surface-associated traits in bacteria. Involved in the regulation of cellulose production. (564 aa)
shiAShikimate transporter; Pseudogene, glycosyltransferase homology. (438 aa)
ldtAL,D-transpeptidase linking Lpp to murein; Responsible, at least in part, for anchoring of the major outer membrane lipoprotein (Lpp, also known as the Braun lipoprotein) to the peptidoglycan via a meso-diaminopimelyl-L-Lys- bond on the terminal residue of Lpp; Belongs to the YkuD family. (310 aa)
dacDD-alanyl-D-alanine carboxypeptidase; Removes C-terminal D-alanyl residues from sugar-peptide cell wall precursors; Belongs to the peptidase S11 family. (388 aa)
wzzBRegulator of length of O-antigen component of lipopolysaccharide chains; Confers a modal distribution of chain length on the O-antigen component of lipopolysaccharide (LPS). Gives rise to a reduced number of short chain molecules and increases in numbers of longer molecules; Belongs to the WzzB/Cld/Rol family. (326 aa)
ugdUDP-glucose 6-dehydrogenase; Protein involved in cell surface antigen activity, host-interacting, colanic acid biosynthetic process and response to desiccation. (388 aa)
insH1-7Pseudogene, lipopolysaccharide biosynthesis protein. (338 aa)
wbbKLipopolysaccharide biosynthesis protein; May be a glycosyltransferase involved in the transfer of UDP- GalF and UDP-glucose. (372 aa)
wbbJPutative lipopolysaccharide biosynthesis O-acetyl transferase; Putative O-acetyltransferase that transfers an O-acetyl group to the O antigen; Belongs to the transferase hexapeptide repeat family. (196 aa)
wbbId-Galf:alpha-d-Glc beta-1,6-galactofuranosyltransferase; Involved in the transfer of galactofuranose (Galf) onto an alpha-D-gluco-configured acceptor substrate to form a beta-1,6-linkage. It uses n-octyl alpha-D-glucopyranoside as an acceptor substrate for the addition of galactofuranose from the donor substrate UDP- galactofuranose. It is not able to use beta-D-glucopyranoside isomers. (330 aa)
wbbHO-antigen polymerase; May link the O-antigen tetrasaccharide units into long chains, giving rise to typical smooth LPS. (388 aa)
glfUDP-galactopyranose mutase, FAD/NAD(P)-binding; Catalyzes the interconversion through a 2-keto intermediate of uridine diphosphogalactopyranose (UDP-GalP) into uridine diphosphogalactofuranose (UDP-GalF); Belongs to the UDP-galactopyranose/dTDP-fucopyranose mutase family. (367 aa)
wzxBPutative polisoprenol-linked O-antigen transporter; May be involved in the translocation process of the nascent O-polysaccharide molecules and/or its ligation to lipid A core units. (415 aa)
rfbCdTDP-4-deoxyrhamnose-3,5-epimerase; Catalyzes the epimerization of the C3' and C5'positions of dTDP-6-deoxy-D-xylo-4-hexulose, forming dTDP-6-deoxy-L-lyxo-4-hexulose. Belongs to the dTDP-4-dehydrorhamnose 3,5-epimerase family. (185 aa)
rfbAGlucose-1-phosphate thymidylyltransferase; Catalyzes the formation of dTDP-glucose, from dTTP and glucose 1-phosphate, as well as its pyrophosphorolysis. Belongs to the glucose-1-phosphate thymidylyltransferase family. (293 aa)
rfbDdTDP-L-rhamnose synthase, NAD(P)-dependent dTDP-4-dehydrorhamnose reductase subunit; Involved in the biosynthesis of the dTDP-L-rhamnose which is an important component of lipopolysaccharide (LPS) (Probable). Catalyzes the reduction of dTDP-6-deoxy-L-lyxo-4-hexulose to yield dTDP-L-rhamnose (By similarity). RmlD uses NADH and NADPH nearly equally well (By similarity); Belongs to the dTDP-4-dehydrorhamnose reductase family. (299 aa)
rfbBdTDP-glucose 4,6 dehydratase, NAD(P)-binding; Catalyzes the dehydration of dTDP-D-glucose to form dTDP-6- deoxy-D-xylo-4-hexulose via a three-step process involving oxidation, dehydration and reduction; Belongs to the NAD(P)-dependent epimerase/dehydratase family. dTDP-glucose dehydratase subfamily. (361 aa)
wcaNPutative regulatory subunit for GalU; Protein involved in nucleotide-sugar biosynthetic process. (297 aa)
wcaMPutative colanic acid biosynthesis protein; Protein involved in colanic acid biosynthetic process. (464 aa)
wcaLPutative colanic acid biosynthesis glycosyl transferase; Protein involved in colanic acid biosynthetic process. (406 aa)
wcaKPutative galactokinase; Protein involved in colanic acid biosynthetic process. (426 aa)
wzxCPutative colanic acid exporter; Probable export protein; Belongs to the polysaccharide synthase family. (492 aa)
wcaJColanic biosynthesis UDP-glucose lipid carrier transferase; Is the initiating enzyme for colanic acid (CA) synthesis. Catalyzes the transfer of the glucose-1-phosphate moiety from UDP-Glc onto the carrier lipid undecaprenyl phosphate (C55-P), forming a phosphoanhydride bond yielding to glucosyl-pyrophosphoryl-undecaprenol (Glc-PP-C55). Also possesses a weak galactose-1-P transferase activity. Belongs to the bacterial sugar transferase family. (464 aa)
cpsGPhosphomannomutase; Involved in the biosynthesis of the capsular polysaccharide colanic acid; Belongs to the phosphohexose mutase family. (456 aa)
cpsBMannose-1-phosphate guanyltransferase; Involved in the biosynthesis of the capsular polysaccharide colanic acid. (478 aa)
wcaIPutative colanic biosynthesis glycosyl transferase; Protein involved in colanic acid biosynthetic process. (407 aa)
wcaHGDP-mannose mannosyl hydrolase; Hydrolyzes both GDP-mannose and GDP-glucose. Could participate in the regulation of cell wall biosynthesis by influencing the concentration of GDP-mannose or GDP-glucose in the cell. Might also be involved in the biosynthesis of the slime polysaccharide colanic acid; Belongs to the Nudix hydrolase family. (159 aa)
wcaGGDP-L-fucose synthase; Catalyzes the two-step NADP-dependent conversion of GDP-4- dehydro-6-deoxy-D-mannose to GDP-fucose, involving an epimerase and a reductase reaction. Belongs to the NAD(P)-dependent epimerase/dehydratase family. Fucose synthase subfamily. (321 aa)
gmdGDP-D-mannose dehydratase, NAD(P)-binding; Catalyzes the conversion of GDP-D-mannose to GDP-4-dehydro-6- deoxy-D-mannose; Belongs to the NAD(P)-dependent epimerase/dehydratase family. GDP-mannose 4,6-dehydratase subfamily. (373 aa)
wcaFPutative transferase; Protein involved in colanic acid biosynthetic process. (182 aa)
wcaEPutative colanic acid biosynthesis glycosyl transferase; Protein involved in colanic acid biosynthetic process. (248 aa)
wcaDPutative colanic acid polymerase. (405 aa)
wcaCPutative glycosyl transferase; Protein involved in colanic acid biosynthetic process. (405 aa)
wcaBPutative transferase; Protein involved in colanic acid biosynthetic process. (162 aa)
wcaAPutative glycosyl transferase; Putative regulator; Protein involved in colanic acid biosynthetic process. (279 aa)
wzcColanic acid production tyrosine-protein kinase; Required for the extracellular polysaccharide colanic acid synthesis. The autophosphorylated form is inactive. Probably involved in the export of colanic acid from the cell to medium. Phosphorylates udg. (720 aa)
wzbColanic acid production protein-tyrosine-phosphatase; Dephosphorylates Wzc. Required for the extracellular polysaccharide colanic acid synthesis, probably involved in the export of colanic acid from the cell to medium. Involved in protection of cells against contact- dependent growth inhibition (CDI), probably due to the loss of a physical impediment to cell-cell contact; Belongs to the low molecular weight phosphotyrosine protein phosphatase family. (147 aa)
metGmethionyl-tRNA synthetase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation; Belongs to the class-I aminoacyl-tRNA synthetase family. MetG type 1 subfamily. (677 aa)
pbpGD-alanyl-D-alanine endopeptidase; Cell wall formation. May play a specialized role in remodeling the cell wall. Specifically hydrolyzes the DD- diaminopimelate-alanine bonds in high-molecular-mass murein sacculi; Belongs to the peptidase S11 family. (310 aa)
yeiPPutative elongation factor; Protein involved in translation. (190 aa)
lpxTLipid A 1-diphosphate synthase; Involved in the modification of the lipid A domain of lipopolysaccharides (LPS). Transfers a phosphate group from undecaprenyl pyrophosphate (C55-PP) to lipid A to form lipid A 1- diphosphate. Contributes to the recycling of undecaprenyl phosphate (C55-P). In vitro, has low undecaprenyl-diphosphate phosphatase activity ; Belongs to the LpxT phosphotransferase family. (237 aa)
mepSMurein DD-endopeptidase MepS/Murein LD-carboxypeptidase; A murein DD-endopeptidase with specificity for D-Ala-meso- diaminopimelic acid (mDAP) cross-links. Its role is probably to cleave D-Ala-mDAP cross-links to allow insertion of new glycans and thus cell wall expansion. Functionally redundant with MepM and MepH. Also has weak LD-carboxypeptidase activity on L-mDAP-D-Ala peptide bonds. Partially suppresses a prc disruption mutant. Belongs to the peptidase C40 family. (188 aa)
rplY50S ribosomal subunit protein L25; This is one of the proteins that binds to the 5S RNA in the ribosome where it forms part of the central protuberance. Binds to the 5S rRNA independently of L5 and L18. Not required for binding of the 5S rRNA/L5/L18 subcomplex to 23S rRNA. (94 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (16%) [HD]