STRINGSTRING
nrfA nrfA nirD nirD narL narL narX narX narK narK narG narG narH narH narJ narJ narI narI narV narV narW narW narY narY narZ narZ narU narU nac nac narP narP napC napC napB napB napA napA narQ narQ argG argG rpoN rpoN rpoA rpoA nirB nirB nirC nirC rpoZ rpoZ glnG glnG glnL glnL rpoB rpoB rpoC rpoC
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
nrfANitrite reductase, formate-dependent, cytochrome; Catalyzes the reduction of nitrite to ammonia, consuming six electrons in the process. Has very low activity toward hydroxylamine. Has even lower activity toward sulfite. Sulfite reductase activity is maximal at neutral pH (By similarity). (478 aa)
nirDNitrite reductase (NADH) small subunit; Required for activity of the reductase. To B.subtilis NasE. (108 aa)
narLResponse regulator in two-component regulatory system with NarX; This protein activates the expression of the nitrate reductase (narGHJI) and formate dehydrogenase-N (fdnGHI) operons and represses the transcription of the fumarate reductase (frdABCD) operon in response to a nitrate/nitrite induction signal transmitted by either the NarX or NarQ proteins. (216 aa)
narXSensory histidine kinase in two-component regulatory system with NarL; Acts as a sensor for nitrate/nitrite and transduces signal of nitrate availability to the NarL protein and of both nitrate/nitrite to the NarP protein. NarX probably activates NarL and NarP by phosphorylation in the presence of nitrate. NarX also plays a negative role in controlling NarL activity, probably through dephosphorylation in the absence of nitrate. (598 aa)
narKNitrate/nitrite transporter; Catalyzes nitrate uptake, nitrite uptake and nitrite export across the cytoplasmic membrane. Functions as a nitrate/nitrite exchanger, and protons are probably not co-transported with the substrate. (463 aa)
narGNitrate reductase 1, alpha subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The alpha chain is the actual site of nitrate reduction. (1247 aa)
narHNitrate reductase 1, beta (Fe-S) subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The beta chain is an electron transfer unit containing four cysteine clusters involved in the formation of iron-sulfur centers. Electrons are transferred from the gamma chain to the molybdenum cofactor of the alpha subunit. (512 aa)
narJMolybdenum-cofactor-assembly chaperone delta subunit of nitrate reductase 1; Chaperone required for proper molybdenum cofactor insertion and final assembly of the membrane-bound respiratory nitrate reductase 1. Required for the insertion of the molybdenum into the apo-NarG subunit, maybe by keeping NarG in an appropriate competent-open conformation for the molybdenum cofactor insertion to occur. NarJ maintains the apoNarGH complex in a soluble state. Upon insertion of the molybdenum cofactor, NarJ seems to dissociate from the activated soluble NarGH complex, before its association with [...] (236 aa)
narINitrate reductase 1, gamma (cytochrome b(NR)) subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The gamma chain is a membrane-embedded heme-iron unit resembling cytochrome b, which transfers electrons from quinones to the beta subunit. (225 aa)
narVNitrate reductase 2 (NRZ), gamma subunit; This is a second nitrate reductase enzyme which can substitute for the NRA enzyme and allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The gamma chain is a membrane-embedded heme-iron unit resembling cytochrome b, which transfers electrons from quinones to the beta subunit. (226 aa)
narWNitrate reductase 2 (NRZ), delta subunit (assembly subunit); Chaperone required for proper molybdenum cofactor insertion and final assembly of the membrane-bound respiratory nitrate reductase 2. (231 aa)
narYNitrate reductase 2 (NRZ), beta subunit; This is a second nitrate reductase enzyme which can substitute for the NRA enzyme and allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The beta chain is an electron transfer unit containing four cysteine clusters involved in the formation of iron-sulfur centers. Electrons are transferred from the gamma chain to the molybdenum cofactor of the alpha subunit. (514 aa)
narZNitrate reductase 2 (NRZ), alpha subunit; This is a second nitrate reductase enzyme which can substitute for the NRA enzyme and allows E.coli to use nitrate as an electron acceptor during anaerobic growth; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. (1246 aa)
narUNitrate/nitrite transporter; Catalyzes nitrate uptake, nitrite uptake and nitrite export across the cytoplasmic membrane. May function as a nitrate/H(+) and nitrite/H(+) channel. Could confer a selective advantage during severe nutrient starvation or slow growth. (462 aa)
nacNitrogen assimilation regulon transcriptional regulator; Transcriptional activator for the hut, put and ure operons and repressor for the gdh and gltB operons in response to nitrogen limitation. Negative regulator of its own expression (By similarity). (305 aa)
narPResponse regulator in two-component regulatory system with NarQ; This protein activates the expression of the nitrate reductase (narGHJI) and formate dehydrogenase-N (fdnGHI) operons and represses the transcription of the fumarate reductase (frdABCD) operon in response to a nitrate/nitrite induction signal transmitted by either the NarX or NarQ proteins. (215 aa)
napCQuinol dehydrogenase, electron source for NapAB; Mediates electron flow from quinones to the NapAB complex. (200 aa)
napBNitrate reductase, small, cytochrome C550 subunit, periplasmic; Electron transfer subunit of the periplasmic nitrate reductase complex NapAB. Receives electrons from the membrane-anchored tetraheme c-type NapC protein and transfers these to NapA subunit, thus allowing electron flow between membrane and periplasm. Essential for periplasmic nitrate reduction with nitrate as the terminal electron acceptor; Belongs to the NapB family. (149 aa)
napANitrate reductase, periplasmic, large subunit; Catalytic subunit of the periplasmic nitrate reductase complex NapAB. Receives electrons from NapB and catalyzes the reduction of nitrate to nitrite; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. NasA/NapA/NarB subfamily. (828 aa)
narQSensory histidine kinase in two-component regulatory system with NarP; Acts as a sensor for nitrate/nitrite and transduces signal of nitrate/nitrite availability to the NarL/NarP proteins. NarQ probably activates NarL and NarP by phosphorylation. NarQ probably negatively regulates the NarL protein by dephosphorylation. (566 aa)
argGArgininosuccinate synthetase; Protein involved in arginine biosynthetic process; Belongs to the argininosuccinate synthase family. Type 2 subfamily. (447 aa)
rpoNRNA polymerase, sigma 54 (sigma N) factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is responsible for the expression of enzymes involved in arginine catabolism. The open complex (sigma-54 and core RNA polymerase) serves as the receptor for the receipt of the melting signal from the remotely bound activator protein GlnG(NtrC). (477 aa)
rpoARNA polymerase, alpha subunit; DNA-dependent RNA polymerase (RNAP) catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. This subunit plays an important role in subunit assembly since its dimerization is the first step in the sequential assembly of subunits to form the holoenzyme. (329 aa)
nirBNitrite reductase, large subunit, NAD(P)H-binding; Nitrite reductase (NAD(P)H) subunit; Protein involved in anaerobic respiration; Belongs to the nitrite and sulfite reductase 4Fe-4S domain family. (847 aa)
nirCNitrite transporter; Catalyzes nitrite uptake and nitrite export across the cytoplasmic membrane. Is up to 10-fold more active than NarK or NarU in nitrite uptake for subsequent reduction in the cytoplasm by the NirB/NirD nitrite reductase; Belongs to the FNT transporter (TC 2.A.44) family. (268 aa)
rpoZRNA polymerase, omega subunit; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits. (91 aa)
glnGDNA-binding transcriptional regulator NtrC; Member of the two-component regulatory system NtrB/NtrC, which controls expression of the nitrogen-regulated (ntr) genes in response to nitrogen limitation. Phosphorylated NtrC binds directly to DNA and stimulates the formation of open promoter-sigma54-RNA polymerase complexes. Activates transcription of many genes and operons whose products minimize the slowing of growth under nitrogen-limiting conditions, including genes coding for glutamine synthetase (glnA), transporters, amino acid permeases and catabolic enzymes. (469 aa)
glnLSensory histidine kinase in two-component regulatory system with GlnG; Member of the two-component regulatory system NtrB/NtrC, which controls expression of the nitrogen-regulated (ntr) genes in response to nitrogen limitation. Under conditions of nitrogen limitation, NtrB autophosphorylates and transfers the phosphoryl group to NtrC. In the presence of nitrogen, acts as a phosphatase that dephosphorylates and inactivates NtrC. (349 aa)
rpoBRNA polymerase, beta subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1342 aa)
rpoCRNA polymerase, beta prime subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1407 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (18%) [HD]