STRINGSTRING
dnaE dnaE dnaQ dnaQ nusB nusB dnaX dnaX holA holA holB holB holE holE nusA nusA rpoA rpoA rpsJ rpsJ rpoZ rpoZ nusG nusG rpoB rpoB rpoC rpoC holD holD holC holC
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
dnaEDNA polymerase III alpha subunit; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3' to 5' exonuclease activity. The alpha chain is the DNA polymerase catalytic subunit. It is tethered to replicating DNA by the beta sliding clamp (dnaN), which confers extremely high processivity to the catalytic subunit, copying a 5.4 kb genome in 11 seconds, a speed of at least 500 nucleotides/second at 30 degrees Celsius. (1160 aa)
dnaQDNA polymerase III epsilon subunit; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. The epsilon subunit contain the editing function and is a proofreading 3'- 5' exonuclease. Contacts both the beta sliding clamp (dnaN) and the polymerase subunit (dnaE), stabilizing their interaction. (243 aa)
nusBTranscription antitermination protein; Involved in transcription antitermination. Required for transcription of ribosomal RNA (rRNA) genes. Binds specifically to the boxA antiterminator sequence of the ribosomal RNA (rrn) operons. The affinity of NusB for the boxA RNA sequence is significantly increased in the presence of the ribosomal protein S10. NusB may serve as a loading factor that ensures efficient entry of S10 into the transcription complexes. It also modulates the rrn boxA-mediated transcription elongation rates. (139 aa)
dnaXDNA polymerase III/DNA elongation factor III, tau and gamma subunits; Part of the beta sliding clamp loading complex, which hydrolyzes ATP to load the beta clamp onto primed DNA to form the DNA replication pre-initiation complex. DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3'-5' exonuclease activity. The gamma complex (gamma(3),delta,delta') is thought to load beta dimers onto DNA by binding ATP which alters the complex's conformation so it can bind beta sliding clamp dimers and open [...] (643 aa)
holADNA polymerase III, delta subunit; Part of the beta sliding clamp loading complex, which hydrolyzes ATP to load the beta clamp onto primed DNA to form the DNA replication pre-initiation complex. DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3'-5' exonuclease activity. The delta subunit is the wrench that will open the beta subunit dimer, which has been modeled to leave a gap large enough for ssDNA to pass through. The gamma complex (gamma(3),delta,delta') is thought to load beta dimers [...] (343 aa)
holBDNA polymerase III, delta prime subunit; Part of the beta sliding clamp loading complex, which hydrolyzes ATP to load the beta clamp onto primed DNA to form the DNA replication pre-initiation complex. DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3' to 5' exonuclease activity. The gamma complex (gamma(3),delta,delta') is thought to load beta dimers onto DNA by binding ATP which alters the complex's conformation so it can bind beta sliding clamp dimers and open them at one interface. Pr [...] (334 aa)
holEDNA polymerase III, theta subunit; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3' to 5' exonuclease activity. (76 aa)
nusATranscription termination/antitermination L factor; Participates in both transcription termination and antitermination. Involved in a variety of cellular and viral termination and antitermination processes, such as Rho-dependent transcriptional termination, intrinsic termination, and phage lambda N- mediated transcriptional antitermination. Also important for coordinating the cellular responses to DNA damage by coupling the processes of nucleotide excision repair and translesion synthesis to transcription. (495 aa)
rpoARNA polymerase, alpha subunit; DNA-dependent RNA polymerase (RNAP) catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. This subunit plays an important role in subunit assembly since its dimerization is the first step in the sequential assembly of subunits to form the holoenzyme. (329 aa)
rpsJ30S ribosomal subunit protein S10; Involved in the binding of tRNA to the ribosomes. In addition, in complex with NusB, is involved in the regulation of ribosomal RNA (rRNA) biosynthesis by transcriptional antitermination. S10 binds RNA non-specifically and increases the affinity of NusB for the boxA RNA sequence. S10 may constitute the critical antitermination component of the NusB-S10 complex. Belongs to the universal ribosomal protein uS10 family. (103 aa)
rpoZRNA polymerase, omega subunit; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits. (91 aa)
nusGTranscription termination factor; Participates in transcription elongation, termination and antitermination. In the absence of Rho, increases the rate of transcription elongation by the RNA polymerase (RNAP), probably by partially suppressing pausing. In the presence of Rho, modulates most Rho-dependent termination events by interacting with the RNAP to render the complex more susceptible to the termination activity of Rho. May be required to overcome a kinetic limitation of Rho to function at certain terminators. Also involved in ribosomal RNA and phage lambda N-mediated transcription [...] (181 aa)
rpoBRNA polymerase, beta subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1342 aa)
rpoCRNA polymerase, beta prime subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1407 aa)
holDDNA polymerase III, psi subunit; Part of the beta sliding clamp loading complex, which hydrolyzes ATP to load the beta clamp onto primed DNA to form the DNA replication pre-initiation complex. DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3' to 5' exonuclease activity. The exact function of the psi subunit is unknown. (137 aa)
holCDNA polymerase III, chi subunit; Part of the beta sliding clamp loading complex, which hydrolyzes ATP to load the beta clamp onto primed DNA to form the DNA replication pre-initiation complex. DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3' to 5' exonuclease activity. (147 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (10%) [HD]