STRINGSTRING
ahpF ahpF hybO hybO hybB hybB glcD glcD gcvT gcvT gcvH gcvH gcvP gcvP xdhC xdhC xdhB xdhB xdhA xdhA hycB hycB hycC hycC hycD hycD hycE hycE hycF hycF hycG hycG nrdF nrdF gltD gltD glpD glpD gpsA gpsA fdoI fdoI fdoH fdoH fdoG fdoG fdhF fdhF gltB gltB nrdE nrdE hcaD hcaD hcaC hcaC hcaF hcaF hcaE hcaE hyfH hyfH hyfG hyfG hyfF hyfF hyfE hyfE hyfD hyfD hyfC hyfC hyfB hyfB nuoA nuoA nuoB nuoB nuoC nuoC nuoE nuoE nuoF nuoF nuoG nuoG nuoH nuoH nuoI nuoI nuoJ nuoJ nuoK nuoK nuoL nuoL nuoM nuoM nuoN nuoN glpC glpC glpB glpB glpA glpA nrdB nrdB nrdA nrdA napA napA napB napB preA preA preT preT gdhA gdhA ynfH ynfH ynfG ynfG ynfF ynfF fdnI fdnI fdnH fdnH fdnG fdnG narZ narZ narY narY narV narV paaE paaE paaC paaC paaB paaB paaA paaA narI narI narH narH narG narG ndh ndh efeO efeO torA torA torC torC hyaA hyaA ssuE ssuE ssuD ssuD dmsC dmsC dmsB dmsB dmsA dmsA trxB trxB sucB sucB sucA sucA sdhA sdhA sdhC sdhC ahpC ahpC cyoA cyoA cyoB cyoB cyoC cyoC cyoD cyoD tauD tauD paoA paoA paoB paoB paoC paoC lpd lpd aceF aceF aceE aceE guaC guaC
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ahpFAlkyl hydroperoxide reductase, F52a subunit, FAD/NAD(P)-binding; Serves to protect the cell against DNA damage by alkyl hydroperoxides. It can use either NADH or NADPH as electron donor for direct reduction of redox dyes or of alkyl hydroperoxides when combined with the AhpC protein; Belongs to the class-II pyridine nucleotide-disulfide oxidoreductase family. (521 aa)
hybOHydrogenase 2, small subunit; This is one of three E.coli hydrogenases synthesized in response to different physiological conditions. HYD2 is involved in hydrogen uptake; Belongs to the [NiFe]/[NiFeSe] hydrogenase small subunit family. (372 aa)
hybBPutative hydrogenase 2 cytochrome b type component; Probable b-type cytochrome; Belongs to the NrfD family. (392 aa)
glcDGlycolate oxidase subunit, FAD-linked; Component of a complex that catalyzes the oxidation of glycolate to glyoxylate. Is required for E.coli to grow on glycolate as a sole source of carbon. Is also able to oxidize D-lactate ((R)-lactate) with a similar rate. Does not link directly to O(2), and 2,6-dichloroindophenol (DCIP) and phenazine methosulfate (PMS) can act as artificial electron acceptors in vitro, but the physiological molecule that functions as primary electron acceptor during glycolate oxidation is unknown ; Belongs to the FAD-binding oxidoreductase/transferase type 4 family. (499 aa)
gcvTAminomethyltransferase, tetrahydrofolate-dependent, subunit (T protein) of glycine cleavage complex; The glycine cleavage system catalyzes the degradation of glycine. (364 aa)
gcvHGlycine cleavage complex lipoylprotein; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. (129 aa)
gcvPGlycine decarboxylase, PLP-dependent, subunit P of glycine cleavage complex; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. (957 aa)
xdhCXanthine dehydrogenase, Fe-S binding subunit; Iron-sulfur subunit of the xanthine dehydrogenase complex. (159 aa)
xdhBXanthine dehydrogenase, FAD-binding subunit; Presumed to be a dehydrogenase, but possibly an oxidase. Participates in limited purine salvage (requires aspartate) but does not support aerobic growth on purines as the sole carbon source (purine catabolism). (292 aa)
xdhAXanthine dehydrogenase, molybdenum binding subunit; Presumed to be a dehydrogenase, but possibly an oxidase. Participates in limited purine salvage (requires aspartate) but does not support aerobic growth on purines as the sole carbon source (purine catabolism). Deletion results in increased adenine sensitivity, suggesting that this protein contributes to the conversion of adenine to guanine nucleotides during purine salvage. (752 aa)
hycBHydrogenase 3, Fe-S subunit; Probable electron transfer protein for hydrogenase 3. (203 aa)
hycCMembrane-spanning protein of hydrogenase 3 (part of FHL complex); Protein involved in fermentation; Belongs to the complex I subunit 4 family. (608 aa)
hycDMembrane-spanning protein of hydrogenase 3 (part of FHL complex); Protein involved in fermentation; Belongs to the complex I subunit 1 family. (307 aa)
hycELarge subunit of hydrogenase 3 (part of FHL complex); Protein involved in fermentation and anaerobic respiration; Belongs to the complex I 49 kDa subunit family. (569 aa)
hycFFormate hydrogenlyase complex iron-sulfur protein; Probable electron transfer protein for hydrogenase 3. (180 aa)
hycGHydrogenase 3 and formate hydrogenase complex, HycG subunit; Hydrogenase activity; Protein involved in fermentation and anaerobic respiration. (255 aa)
nrdFRibonucleoside-diphosphate reductase 2, beta subunit, ferritin-like protein; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R2F contains the tyrosyl radical required for catalysis; Belongs to the ribonucleoside diphosphate reductase small chain family. (319 aa)
gltDGlutamate synthase, 4Fe-4S protein, small subunit; Catalyzes the conversion of L-glutamine and 2-oxoglutarate into two molecules of L-glutamate. (472 aa)
glpDSn-glycerol-3-phosphate dehydrogenase, aerobic, FAD/NAD(P)-binding; Conversion of glycerol 3-phosphate to dihydroxyacetone. Uses molecular oxygen or nitrate as electron acceptor. (501 aa)
gpsAGlycerol-3-phosphate dehydrogenase (NAD+); Protein involved in glycerol metabolic process and phosphorus metabolic process; Belongs to the NAD-dependent glycerol-3-phosphate dehydrogenase family. (339 aa)
fdoIFormate dehydrogenase-O, cytochrome b556 subunit; Allows to use formate as major electron donor during aerobic respiration. Subunit gamma is probably the cytochrome b556(FDO) component of the formate dehydrogenase. (211 aa)
fdoHFormate dehydrogenase-O, Fe-S subunit; Allows to use formate as major electron donor during aerobic respiration. The beta chain is an electron transfer unit containing 4 cysteine clusters involved in the formation of iron-sulfur centers. Electrons are transferred from the gamma chain to the molybdenum cofactor of the alpha subunit (By similarity). (300 aa)
fdoGFormate dehydrogenase-O, large subunit; Allows to use formate as major electron donor during aerobic respiration. Subunit alpha possibly forms the active site; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. (1016 aa)
fdhFFormate dehydrogenase-H, selenopolypeptide subunit; Decomposes formic acid to hydrogen and carbon dioxide under anaerobic conditions in the absence of exogenous electron acceptors. (715 aa)
gltBGlutamate synthase, large subunit; Catalyzes the conversion of L-glutamine and 2-oxoglutarate into two molecules of L-glutamate. (1486 aa)
nrdERibonucleoside-diphosphate reductase 2, alpha subunit; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R1E contains the binding sites for both substrates and allosteric effectors and carries out the actual reduction of the ribonucleotide; Belongs to the ribonucleoside diphosphate reductase large chain family. (714 aa)
hcaDPhenylpropionate dioxygenase, ferredoxin reductase subunit; Part of the multicomponent 3-phenylpropionate dioxygenase, that converts 3-phenylpropionic acid (PP) and cinnamic acid (CI) into 3-phenylpropionate-dihydrodiol (PP-dihydrodiol) and cinnamic acid- dihydrodiol (CI-dihydrodiol), respectively; Belongs to the bacterial ring-hydroxylating dioxygenase ferredoxin reductase family. (400 aa)
hcaC3-phenylpropionate dioxygenase, ferredoxin subunit; Part of the multicomponent 3-phenylpropionate dioxygenase, that converts 3-phenylpropionic acid (PP) and cinnamic acid (CI) into 3-phenylpropionate-dihydrodiol (PP-dihydrodiol) and cinnamic acid- dihydrodiol (CI-dihydrodiol), respectively. This protein seems to be a 2Fe-2S ferredoxin. (106 aa)
hcaF3-phenylpropionate dioxygenase, small (beta) subunit; Part of the multicomponent 3-phenylpropionate dioxygenase. Converts 3-phenylpropionic acid (PP) and cinnamic acid (CI) into 3- phenylpropionate-dihydrodiol (PP-dihydrodiol) and cinnamic acid- dihydrodiol (CI-dihydrodiol), respectively. (172 aa)
hcaE3-phenylpropionate dioxygenase, large (alpha) subunit; Part of the multicomponent 3-phenylpropionate dioxygenase. Converts 3-phenylpropionic acid (PP) and cinnamic acid (CI) into 3- phenylpropionate-dihydrodiol (PP-dihydrodiol) and cinnamic acid- dihydrodiol (CI-dihydrodiol), respectively. (453 aa)
hyfHHydrogenase 4, Fe-S subunit; Probable electron transfer protein for hydrogenase 4. (181 aa)
hyfGHydrogenase 4, subunit; Possible component of hydrogenase 4. (555 aa)
hyfFHydrogenase 4, membrane subunit; Possible component of hydrogenase 4. Belongs to the complex I subunit 5 family. (526 aa)
hyfEHydrogenase 4, membrane subunit; Possible component of hydrogenase 4. (216 aa)
hyfDHydrogenase 4, membrane subunit; Possible component of hydrogenase 4. Belongs to the complex I subunit 5 family. (479 aa)
hyfCHydrogenase 4, membrane subunit; Possible component of hydrogenase 4. Belongs to the complex I subunit 1 family. (315 aa)
hyfBHydrogenase 4, membrane subunit; Possible component of hydrogenase 4. (672 aa)
nuoANADH:ubiquinone oxidoreductase, membrane subunit A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. (147 aa)
nuoBNADH:ubiquinone oxidoreductase, chain B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (220 aa)
nuoCNADH:ubiquinone oxidoreductase, fused CD subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the C-terminal section; belongs to the complex I 49 kDa subunit family. (596 aa)
nuoENADH:ubiquinone oxidoreductase, chain E; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (166 aa)
nuoFNADH:ubiquinone oxidoreductase, chain F; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (445 aa)
nuoGNADH:ubiquinone oxidoreductase, chain G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (908 aa)
nuoHNADH:ubiquinone oxidoreductase, membrane subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (325 aa)
nuoINADH:ubiquinone oxidoreductase, chain I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (180 aa)
nuoJNADH:ubiquinone oxidoreductase, membrane subunit J; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 6 family. (184 aa)
nuoKNADH:ubiquinone oxidoreductase, membrane subunit K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (100 aa)
nuoLNADH:ubiquinone oxidoreductase, membrane subunit L; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 5 family. (613 aa)
nuoMNADH:ubiquinone oxidoreductase, membrane subunit M; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4 family. (509 aa)
nuoNNADH:ubiquinone oxidoreductase, membrane subunit N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (485 aa)
glpCAnaerobic sn-glycerol-3-phosphate dehydrogenase, C subunit, 4Fe-4S iron-sulfur cluster; Electron transfer protein; may also function as the membrane anchor for the GlpAB dimer. (396 aa)
glpBAnaerobic sn-glycerol-3-phosphate dehydrogenase membrane anchor subunit; Conversion of glycerol 3-phosphate to dihydroxyacetone. Uses fumarate or nitrate as electron acceptor; Belongs to the anaerobic G-3-P dehydrogenase subunit B family. (419 aa)
glpAAnaerobic sn-glycerol-3-phosphate dehydrogenase, large FAD/NAD(P)-binding subunit; Conversion of glycerol 3-phosphate to dihydroxyacetone. Uses fumarate or nitrate as electron acceptor. (542 aa)
nrdBRibonucleoside-diphosphate reductase 1, beta subunit, ferritin-like protein; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R2 contains the tyrosyl radical required for catalysis; Belongs to the ribonucleoside diphosphate reductase small chain family. (376 aa)
nrdARibonucleoside-diphosphate reductase 1, alpha subunit; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. R1 contains the binding sites for both substrates and allosteric effectors and carries out the actual reduction of the ribonucleotide. It also provides redox-active cysteines. (761 aa)
napANitrate reductase, periplasmic, large subunit; Catalytic subunit of the periplasmic nitrate reductase complex NapAB. Receives electrons from NapB and catalyzes the reduction of nitrate to nitrite; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. NasA/NapA/NarB subfamily. (828 aa)
napBNitrate reductase, small, cytochrome C550 subunit, periplasmic; Electron transfer subunit of the periplasmic nitrate reductase complex NapAB. Receives electrons from the membrane-anchored tetraheme c-type NapC protein and transfers these to NapA subunit, thus allowing electron flow between membrane and periplasm. Essential for periplasmic nitrate reduction with nitrate as the terminal electron acceptor; Belongs to the NapB family. (149 aa)
preADihydropyrimidine dehydrogenase, NADH-dependent, subunit C; Involved in pyrimidine base degradation. Catalyzes physiologically the reduction of uracil to 5,6-dihydrouracil (DHU) by using NADH as a specific cosubstrate. It also catalyzes the reverse reaction and the reduction of thymine to 5,6-dihydrothymine (DHT). (411 aa)
preTDihydropyrimidine dehydrogenase, NADH-dependent, subunit N; Involved in pyrimidine base degradation. Catalyzes physiologically the reduction of uracil to 5,6-dihydrouracil (DHU) by using NADH as a specific cosubstrate. It also catalyzes the reverse reaction and the reduction of thymine to 5,6-dihydrothymine (DHT). (412 aa)
gdhAGlutamate dehydrogenase, NADP-specific; Catalyzes the reversible oxidative deamination of glutamate to alpha-ketoglutarate and ammonia; Belongs to the Glu/Leu/Phe/Val dehydrogenases family. (447 aa)
ynfHOxidoreductase, membrane subunit; Terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds. The C subunit anchors the other two subunits to the membrane and stabilize the catalytic subunits (By similarity); Belongs to the DmsC family. (284 aa)
ynfGOxidoreductase, Fe-S subunit; Electron transfer subunit of the terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds. (205 aa)
ynfFS- and N-oxide reductase, A subunit, periplasmic; Terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds. (807 aa)
fdnIFormate dehydrogenase-N, cytochrome B556 (gamma) subunit, nitrate-inducible; Formate dehydrogenase allows E.coli to use formate as major electron donor during anaerobic respiration, when nitrate is used as electron acceptor. Subunit gamma is the cytochrome b556 component of the formate dehydrogenase-N, and also contains a menaquinone reduction site that receives electrons from the beta subunit (FdnH), through its hemes. Formate dehydrogenase-N is part of a system that generates proton motive force, together with the dissimilatory nitrate reductase (Nar). (217 aa)
fdnHFormate dehydrogenase-N, Fe-S (beta) subunit, nitrate-inducible; Formate dehydrogenase allows E.coli to use formate as major electron donor during anaerobic respiration, when nitrate is used as electron acceptor. The beta subunit FdnH is an electron transfer unit containing 4 iron-sulfur clusters; it serves as a conduit for electrons that are transferred from the formate oxidation site in the alpha subunit (FdnG) to the menaquinone associated with the gamma subunit (FdnI) of formate dehydrogenase-N. Formate dehydrogenase-N is part of a system that generates proton motive force, togethe [...] (294 aa)
fdnGFormate dehydrogenase-N, alpha subunit, nitrate-inducible; Formate dehydrogenase allows E.coli to use formate as major electron donor during anaerobic respiration, when nitrate is used as electron acceptor. The alpha subunit FdnG contains the formate oxidation site. Electrons are transferred from formate to menaquinone in the gamma subunit (FdnI), through the 4Fe-4S clusters in the beta subunit (FdnH). Formate dehydrogenase-N is part of a system that generates proton motive force, together with the dissimilatory nitrate reductase (Nar). (1015 aa)
narZNitrate reductase 2 (NRZ), alpha subunit; This is a second nitrate reductase enzyme which can substitute for the NRA enzyme and allows E.coli to use nitrate as an electron acceptor during anaerobic growth; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. (1246 aa)
narYNitrate reductase 2 (NRZ), beta subunit; This is a second nitrate reductase enzyme which can substitute for the NRA enzyme and allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The beta chain is an electron transfer unit containing four cysteine clusters involved in the formation of iron-sulfur centers. Electrons are transferred from the gamma chain to the molybdenum cofactor of the alpha subunit. (514 aa)
narVNitrate reductase 2 (NRZ), gamma subunit; This is a second nitrate reductase enzyme which can substitute for the NRA enzyme and allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The gamma chain is a membrane-embedded heme-iron unit resembling cytochrome b, which transfers electrons from quinones to the beta subunit. (226 aa)
paaERing 1,2-phenylacetyl-CoA epoxidase, NAD(P)H oxidoreductase component; Component of 1,2-phenylacetyl-CoA epoxidase multicomponent enzyme system which catalyzes the reduction of phenylacetyl-CoA (PA- CoA) to form 1,2-epoxyphenylacetyl-CoA. The subunit E is a reductase with a preference for NADPH and FAD, capable of reducing cytochrome c. (356 aa)
paaCRing 1,2-phenylacetyl-CoA epoxidase subunit; Component of 1,2-phenylacetyl-CoA epoxidase multicomponent enzyme system which catalyzes the reduction of phenylacetyl-CoA (PA- CoA) to form 1,2-epoxyphenylacetyl-CoA. The subunit C may be essential for structural integrity of the alpha subunit. (248 aa)
paaBPutative ring 1,2-phenylacetyl-CoA epoxidase subunit; Component of 1,2-phenylacetyl-CoA epoxidase multicomponent enzyme system which catalyzes the reduction of phenylacetyl-CoA (PA- CoA) to form 1,2-epoxyphenylacetyl-CoA. The subunit B may play a regulatory role or be directly involved in electron transport. (95 aa)
paaARing 1,2-phenylacetyl-CoA epoxidase subunit; Component of 1,2-phenylacetyl-CoA epoxidase multicomponent enzyme system which catalyzes the reduction of phenylacetyl-CoA (PA- CoA) to form 1,2-epoxyphenylacetyl-CoA. The subunit A is the catalytic subunit involved in the incorporation of one atom of molecular oxygen into phenylacetyl-CoA. (309 aa)
narINitrate reductase 1, gamma (cytochrome b(NR)) subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The gamma chain is a membrane-embedded heme-iron unit resembling cytochrome b, which transfers electrons from quinones to the beta subunit. (225 aa)
narHNitrate reductase 1, beta (Fe-S) subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The beta chain is an electron transfer unit containing four cysteine clusters involved in the formation of iron-sulfur centers. Electrons are transferred from the gamma chain to the molybdenum cofactor of the alpha subunit. (512 aa)
narGNitrate reductase 1, alpha subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The alpha chain is the actual site of nitrate reduction. (1247 aa)
ndhRespiratory NADH dehydrogenase 2/cupric reductase; Transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. Does not couple the redox reaction to proton translocation. (434 aa)
efeOIron uptake system component EfeO; Involved in Fe(2+) uptake. Could be an iron-binding and/or electron-transfer component. (375 aa)
torATrimethylamine N-oxide (TMAO) reductase I, catalytic subunit; Reduces trimethylamine-N-oxide (TMAO) into trimethylamine; an anaerobic reaction coupled to energy-yielding reactions. (848 aa)
torCTrimethylamine N-oxide (TMAO) reductase I, cytochrome c-type subunit; Part of the anaerobic respiratory chain of trimethylamine-N- oxide reductase TorA. Acts by transferring electrons from the membranous menaquinones to TorA. This transfer probably involves an electron transfer pathway from menaquinones to the N-terminal domain of TorC, then from the N-terminus to the C-terminus, and finally to TorA. TorC apocytochrome negatively autoregulates the torCAD operon probably by inhibiting the TorS kinase activity. (390 aa)
hyaAHydrogenase 1, small subunit; This is one of three E.coli hydrogenases synthesized in response to different physiological conditions. HYD1 is believed to have a role in hydrogen cycling during fermentative growth; Belongs to the [NiFe]/[NiFeSe] hydrogenase small subunit family. (372 aa)
ssuENAD(P)H-dependent FMN reductase; Catalyzes an NADPH-dependent reduction of FMN, but is also able to reduce FAD or riboflavin. (191 aa)
ssuDAlkanesulfonate monooxygenase, FMNH(2)-dependent; Involved in desulfonation of aliphatic sulfonates. Catalyzes the conversion of pentanesulfonic acid to sulfite and pentaldehyde and is able to desulfonate a wide range of sulfonated substrates including C-2 to C-10 unsubstituted linear alkanesulfonates, substituted ethanesulfonic acids and sulfonated buffers; Belongs to the SsuD family. (381 aa)
dmsCDimethyl sulfoxide reductase, anaerobic, subunit C; Terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds. DmsC anchors the DmsAB dimer to the membrane and stabilizes it. (287 aa)
dmsBDimethyl sulfoxide reductase, anaerobic, subunit B; Electron transfer subunit of the terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds. (205 aa)
dmsADimethyl sulfoxide reductase, anaerobic, subunit A; Catalyzes the reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS). DMSO reductase serves as the terminal reductase under anaerobic conditions, with DMSO being the terminal electron acceptor. Terminal reductase during anaerobic growth on various sulfoxides and N-oxide compounds. Allows E.coli to grow anaerobically on DMSO as respiratory oxidant. (814 aa)
trxBThioredoxin reductase, FAD/NAD(P)-binding; Thioredoxin reductase; Belongs to the class-II pyridine nucleotide-disulfide oxidoreductase family. (321 aa)
sucBDihydrolipoyltranssuccinase; E2 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the second step in the conversion of 2- oxoglutarate to succinyl-CoA and CO(2). (405 aa)
sucA2-oxoglutarate decarboxylase, thiamine triphosphate-binding; E1 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the decarboxylation of 2-oxoglutarate, the first step in the conversion of 2-oxoglutarate to succinyl-CoA and CO(2). (933 aa)
sdhASuccinate dehydrogenase, flavoprotein subunit; Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth. (588 aa)
sdhCSuccinate dehydrogenase, membrane subunit, binds cytochrome b556; Membrane-anchoring subunit of succinate dehydrogenase (SDH); Belongs to the cytochrome b560 family. (129 aa)
ahpCAlkyl hydroperoxide reductase, C22 subunit; Thiol-specific peroxidase that catalyzes the reduction of hydrogen peroxide and organic hydroperoxides to water and alcohols, respectively. Plays a role in cell protection against oxidative stress by detoxifying peroxides. Is the primary scavenger for endogenously generated hydrogen peroxides; Belongs to the peroxiredoxin family. AhpC/Prx1 subfamily. (187 aa)
cyoACytochrome o ubiquinol oxidase subunit II; Cytochrome bo(3) ubiquinol terminal oxidase is the component of the aerobic respiratory chain of E.coli that predominates when cells are grown at high aeration. Has proton pump activity across the membrane in addition to electron transfer, pumping 2 protons/electron. (315 aa)
cyoBCytochrome o ubiquinol oxidase subunit I; Cytochrome bo(3) ubiquinol terminal oxidase is the component of the aerobic respiratory chain of E.coli that predominates when cells are grown at high aeration. Has proton pump activity across the membrane in addition to electron transfer, pumping 2 protons/electron. Protons are probably pumped via D- and K- channels found in this subunit. (663 aa)
cyoCCytochrome o ubiquinol oxidase subunit III; Cytochrome bo(3) ubiquinol terminal oxidase is the component of the aerobic respiratory chain of E.coli that predominates when cells are grown at high aeration. Has proton pump activity across the membrane in addition to electron transfer, pumping 2 protons/electron. (204 aa)
cyoDCytochrome o ubiquinol oxidase subunit IV; Cytochrome bo(3) ubiquinol terminal oxidase is the component of the aerobic respiratory chain of E.coli that predominates when cells are grown at high aeration. Has proton pump activity across the membrane in addition to electron transfer, pumping 2 protons/electron. (109 aa)
tauDTaurine dioxygenase, 2-oxoglutarate-dependent; Catalyzes the alpha-ketoglutarate-dependent hydroxylation of taurine yielding sulfite and aminoacetaldehyde after decomposition of an unstable intermediate. Is required for the utilization of taurine (2-aminoethanesulfonate) as an alternative sulfur source for growth in the absence of sulfate. To a lesser extent, pentanesulfonate, 3-(N-morpholino)propanesulfonate and 1,3-dioxo-2-isoindolineethanesulfonate are also desulfonated by this enzyme in vitro; however, desulfonation by TauD of organosulfonates other than taurine seem to be of littl [...] (283 aa)
paoAPaoABC aldehyde oxidoreductase, 2Fe-2S subunit; Oxidizes aldehydes to the corresponding carboxylic acids with a preference for aromatic aldehydes. It might play a role in the detoxification of aldehydes to avoid cell damage. (229 aa)
paoBPaoABC aldehyde oxidoreductase, FAD-containing subunit; Oxidizes aldehydes to the corresponding carboxylic acids with a preference for aromatic aldehydes. It might play a role in the detoxification of aldehydes to avoid cell damage. (318 aa)
paoCPaoABC aldehyde oxidoreductase, Moco-containing subunit; Oxidizes aldehydes to the corresponding carboxylic acids with a preference for aromatic aldehydes. It might play a role in the detoxification of aldehydes to avoid cell damage. Belongs to the xanthine dehydrogenase family. (732 aa)
lpdDihydrolipoyl dehydrogenase; Lipoamide dehydrogenase is a component of the glycine cleavage system as well as of the alpha-ketoacid dehydrogenase complexes. (474 aa)
aceFPyruvate dehydrogenase, dihydrolipoyltransacetylase component E2; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). It contains multiple copies of three enzymatic components: pyruvate dehydrogenase (E1), dihydrolipoamide acetyltransferase (E2) and lipoamide dehydrogenase (E3). (630 aa)
aceEPyruvate dehydrogenase, decarboxylase component E1, thiamine triphosphate-binding; Component of the pyruvate dehydrogenase (PDH) complex, that catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (887 aa)
guaCGMP reductase; Catalyzes the irreversible NADPH-dependent deamination of GMP to IMP. It functions in the conversion of nucleobase, nucleoside and nucleotide derivatives of G to A nucleotides, and in maintaining the intracellular balance of A and G nucleotides; Belongs to the IMPDH/GMPR family. GuaC type 1 subfamily. (347 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (40%) [HD]