STRINGSTRING
cysJ cysJ fdnI fdnI fdnH fdnH narZ narZ narY narY narV narV cybB cybB paaE paaE pfo pfo narI narI narH narH narG narG dsbB dsbB ndh ndh grxB grxB yceJ yceJ torC torC yccM yccM cbdB cbdB cbdA cbdA hyaC hyaC sdhA sdhA sdhB sdhB cydA cydA cydB cydB grxA grxA hcr hcr dmsB dmsB rsxD rsxD rsxG rsxG rsxE rsxE ydiQ ydiQ ydiR ydiR ydiT ydiT torY torY yedZ yedZ yodB yodB napC napC napB napB napH napH napG napG napA napA yfaE yfaE glpC glpC hyfA hyfA hyfH hyfH fdx fdx hcaC hcaC yfhL yfhL trxC trxC lhgO lhgO nrdH nrdH norV norV hydN hydN hycF hycF hycB hycB ygcO ygcO ygcQ ygcQ ygcR ygcR yqcA yqcA ygfS ygfS fldB fldB hybB hybB bfd bfd yhjA yhjA ysaA ysaA grxC grxC mioC mioC trxA trxA fdoI fdoI fdoH fdoH nrfA nrfA nrfB nrfB nrfC nrfC dsbD dsbD frdB frdB frdA frdA glcF glcF cydX cydX rsxC rsxC rsxB rsxB rsxA rsxA ynfG ynfG sdhD sdhD sdhC sdhC fldA fldA cyoA cyoA cyoB cyoB cyoC cyoC cyoD cyoD ykgF ykgF ykgJ ykgJ fixX fixX fixC fixC fixB fixB fixA fixA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
cysJSulfite reductase, alpha subunit, flavoprotein; Component of the sulfite reductase complex that catalyzes the 6-electron reduction of sulfite to sulfide. This is one of several activities required for the biosynthesis of L-cysteine from sulfate. The flavoprotein component catalyzes the electron flow from NADPH -> FAD -> FMN to the hemoprotein component; In the N-terminal section; belongs to the flavodoxin family. (599 aa)
fdnIFormate dehydrogenase-N, cytochrome B556 (gamma) subunit, nitrate-inducible; Formate dehydrogenase allows E.coli to use formate as major electron donor during anaerobic respiration, when nitrate is used as electron acceptor. Subunit gamma is the cytochrome b556 component of the formate dehydrogenase-N, and also contains a menaquinone reduction site that receives electrons from the beta subunit (FdnH), through its hemes. Formate dehydrogenase-N is part of a system that generates proton motive force, together with the dissimilatory nitrate reductase (Nar). (217 aa)
fdnHFormate dehydrogenase-N, Fe-S (beta) subunit, nitrate-inducible; Formate dehydrogenase allows E.coli to use formate as major electron donor during anaerobic respiration, when nitrate is used as electron acceptor. The beta subunit FdnH is an electron transfer unit containing 4 iron-sulfur clusters; it serves as a conduit for electrons that are transferred from the formate oxidation site in the alpha subunit (FdnG) to the menaquinone associated with the gamma subunit (FdnI) of formate dehydrogenase-N. Formate dehydrogenase-N is part of a system that generates proton motive force, togethe [...] (294 aa)
narZNitrate reductase 2 (NRZ), alpha subunit; This is a second nitrate reductase enzyme which can substitute for the NRA enzyme and allows E.coli to use nitrate as an electron acceptor during anaerobic growth; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. (1246 aa)
narYNitrate reductase 2 (NRZ), beta subunit; This is a second nitrate reductase enzyme which can substitute for the NRA enzyme and allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The beta chain is an electron transfer unit containing four cysteine clusters involved in the formation of iron-sulfur centers. Electrons are transferred from the gamma chain to the molybdenum cofactor of the alpha subunit. (514 aa)
narVNitrate reductase 2 (NRZ), gamma subunit; This is a second nitrate reductase enzyme which can substitute for the NRA enzyme and allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The gamma chain is a membrane-embedded heme-iron unit resembling cytochrome b, which transfers electrons from quinones to the beta subunit. (226 aa)
cybBCytochrome b561; B-type di-heme cytochrome with a major alpha-absorption peak at 561 nm and a minor peak at 555 nm. (176 aa)
paaERing 1,2-phenylacetyl-CoA epoxidase, NAD(P)H oxidoreductase component; Component of 1,2-phenylacetyl-CoA epoxidase multicomponent enzyme system which catalyzes the reduction of phenylacetyl-CoA (PA- CoA) to form 1,2-epoxyphenylacetyl-CoA. The subunit E is a reductase with a preference for NADPH and FAD, capable of reducing cytochrome c. (356 aa)
pfoPyruvate-flavodoxin oxidoreductase; Oxidoreductase required for the transfer of electrons from pyruvate to flavodoxin. (1174 aa)
narINitrate reductase 1, gamma (cytochrome b(NR)) subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The gamma chain is a membrane-embedded heme-iron unit resembling cytochrome b, which transfers electrons from quinones to the beta subunit. (225 aa)
narHNitrate reductase 1, beta (Fe-S) subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The beta chain is an electron transfer unit containing four cysteine clusters involved in the formation of iron-sulfur centers. Electrons are transferred from the gamma chain to the molybdenum cofactor of the alpha subunit. (512 aa)
narGNitrate reductase 1, alpha subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The alpha chain is the actual site of nitrate reduction. (1247 aa)
dsbBOxidoreductase that catalyzes reoxidation of DsbA protein disulfide isomerase I; Required for disulfide bond formation in some periplasmic proteins such as PhoA or OmpA. Acts by oxidizing the DsbA protein. PhoP-regulated transcription is redox-sensitive, being activated when the periplasm becomes more reducing (deletion of dsbA/dsbB, treatment with dithiothreitol). MgrB acts between DsbA/DsbB and PhoP/PhoQ in this pathway. (176 aa)
ndhRespiratory NADH dehydrogenase 2/cupric reductase; Transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. Does not couple the redox reaction to proton translocation. (434 aa)
grxBGlutaredoxin 2 (Grx2); Involved in reducing some disulfide bonds in a coupled system with glutathione reductase. Does not act as hydrogen donor for ribonucleotide reductase. (215 aa)
yceJPutative cytochrome b561; Protein involved in cytochrome complex assembly; Belongs to the cytochrome b561 family. (188 aa)
torCTrimethylamine N-oxide (TMAO) reductase I, cytochrome c-type subunit; Part of the anaerobic respiratory chain of trimethylamine-N- oxide reductase TorA. Acts by transferring electrons from the membranous menaquinones to TorA. This transfer probably involves an electron transfer pathway from menaquinones to the N-terminal domain of TorC, then from the N-terminus to the C-terminus, and finally to TorA. TorC apocytochrome negatively autoregulates the torCAD operon probably by inhibiting the TorS kinase activity. (390 aa)
yccMPutative 4Fe-4S membrane protein. (357 aa)
cbdBCytochrome bd-II oxidase, subunit II; A terminal oxidase that catalyzes quinol-dependent, Na(+)- independent oxygen uptake. Prefers menadiol over other quinols although ubiquinol was not tested. Generates a proton motive force using protons and electrons from opposite sides of the membrane to generate H(2)O, transferring 1 proton/electron. (378 aa)
cbdACytochrome bd-II oxidase, subunit I; A terminal oxidase that catalyzes quinol-dependent, Na(+)- independent oxygen uptake. Prefers menadiol over other quinols although ubiquinol was not tested. Generates a proton motive force using protons and electrons from opposite sides of the membrane to generate H(2)O, transferring 1 proton/electron. (514 aa)
hyaCHydrogenase 1, b-type cytochrome subunit; Probable b-type cytochrome; Belongs to the HupC/HyaC/HydC family. (235 aa)
sdhASuccinate dehydrogenase, flavoprotein subunit; Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth. (588 aa)
sdhBSuccinate dehydrogenase, FeS subunit; Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth. (238 aa)
cydACytochrome d terminal oxidase, subunit I; A terminal oxidase that produces a proton motive force by the vectorial transfer of protons across the inner membrane. It is the component of the aerobic respiratory chain of E.coli that predominates when cells are grown at low aeration. Generates a proton motive force using protons and electrons from opposite sides of the membrane to generate H(2)O, transferring 1 proton/electron. Belongs to the cytochrome ubiquinol oxidase subunit 1 family. (522 aa)
cydBCytochrome d terminal oxidase, subunit II; A terminal oxidase that produces a proton motive force by the vectorial transfer of protons across the inner membrane. It is the component of the aerobic respiratory chain of E.coli that predominates when cells are grown at low aeration. Generates a proton motive force using protons and electrons from opposite sides of the membrane to generate H(2)O, transferring 1 proton/electron. (379 aa)
grxAGlutaredoxin 1, redox coenzyme for ribonucleotide reductase (RNR1a); The disulfide bond functions as an electron carrier in the glutathione-dependent synthesis of deoxyribonucleotides by the enzyme ribonucleotide reductase. In addition, it is also involved in reducing some disulfide bonds in a coupled system with glutathione reductase; Belongs to the glutaredoxin family. (85 aa)
hcrHCP oxidoreductase, NADH-dependent; NADH oxidoreductase acting in concert with HCP. (322 aa)
dmsBDimethyl sulfoxide reductase, anaerobic, subunit B; Electron transfer subunit of the terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds. (205 aa)
rsxDSoxR iron-sulfur cluster reduction factor component; Part of a membrane-bound complex that couples electron transfer with translocation of ions across the membrane (By similarity). Required to maintain the reduced state of SoxR. Probably transfers electron from NAD(P)H to SoxR. Belongs to the NqrB/RnfD family. (352 aa)
rsxGSoxR iron-sulfur cluster reduction factor component; Part of a membrane-bound complex that couples electron transfer with translocation of ions across the membrane (By similarity). Required to maintain the reduced state of SoxR. Probably transfers electron from NAD(P)H to SoxR. Belongs to the RnfG family. (206 aa)
rsxESoxR iron-sulfur cluster reduction factor component; Part of a membrane-bound complex that couples electron transfer with translocation of ions across the membrane (By similarity). Required to maintain the reduced state of SoxR. Probably transfers electron from NAD(P)H to SoxR. (231 aa)
ydiQPutative electron transfer flavoprotein subunit; May play a role in a redox process; Belongs to the ETF beta-subunit/FixA family. (254 aa)
ydiRPutative electron transfer flavoprotein, FAD-binding subunit; May play a role in a redox process; Belongs to the ETF alpha-subunit/FixB family. (312 aa)
ydiTPutative 3Fe-4S ferredoxin-type protein; Could be a 3Fe-4S cluster-containing protein. Probably participates in a redox process with YdiQ, YdiR and YdiS. (97 aa)
torYTMAO reductase III (TorYZ), cytochrome c-type subunit; Part of the anaerobic respiratory chain of trimethylamine-N- oxide reductase TorZ. Required for electron transfer to the TorZ terminal enzyme. (366 aa)
yedZInner membrane heme subunit for periplasmic YedYZ reductase; Part of the MsrPQ system that repairs oxidized periplasmic proteins containing methionine sulfoxide residues (Met-O), using respiratory chain electrons. Thus protects these proteins from oxidative-stress damage caused by reactive species of oxygen and chlorine. MsrPQ is essential for the maintenance of envelope integrity under bleach stress, rescuing a wide series of structurally unrelated periplasmic proteins from methionine oxidation, including the primary periplasmic chaperone SurA and the lipoprotein Pal. MsrQ provides el [...] (211 aa)
yodBCytochrome b561 homolog 1; Protein involved in cytochrome complex assembly. (176 aa)
napCQuinol dehydrogenase, electron source for NapAB; Mediates electron flow from quinones to the NapAB complex. (200 aa)
napBNitrate reductase, small, cytochrome C550 subunit, periplasmic; Electron transfer subunit of the periplasmic nitrate reductase complex NapAB. Receives electrons from the membrane-anchored tetraheme c-type NapC protein and transfers these to NapA subunit, thus allowing electron flow between membrane and periplasm. Essential for periplasmic nitrate reduction with nitrate as the terminal electron acceptor; Belongs to the NapB family. (149 aa)
napHFerredoxin-type protein; Required for electron transfer from ubiquinol, via NapC, to the periplasmic nitrate reductase NapAB complex. (287 aa)
napGFerredoxin-type protein; Required for electron transfer from ubiquinol, via NapC, to the periplasmic nitrate reductase NapAB complex. (231 aa)
napANitrate reductase, periplasmic, large subunit; Catalytic subunit of the periplasmic nitrate reductase complex NapAB. Receives electrons from NapB and catalyzes the reduction of nitrate to nitrite; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. NasA/NapA/NarB subfamily. (828 aa)
yfaEUncharacterized ferredoxin-like protein YfaE; Ferredoxin involved with ribonucleotide reductase diferric-tyrosyl radical (Y*) cofactor maintenance. (84 aa)
glpCAnaerobic sn-glycerol-3-phosphate dehydrogenase, C subunit, 4Fe-4S iron-sulfur cluster; Electron transfer protein; may also function as the membrane anchor for the GlpAB dimer. (396 aa)
hyfAHydrogenase 4, 4Fe-4S subunit; Probable electron transfer protein for hydrogenase 4. (205 aa)
hyfHHydrogenase 4, Fe-S subunit; Probable electron transfer protein for hydrogenase 4. (181 aa)
fdx[2Fe-2S] ferredoxin; Ferredoxin are iron-sulfur proteins that transfer electrons in a wide variety of metabolic reactions. Although the function of this ferredoxin is unknown it is probable that it has a role as a cellular electron transfer protein. Involved in the in vivo assembly of the Fe-S clusters in a wide variety of iron-sulfur proteins. (111 aa)
hcaC3-phenylpropionate dioxygenase, ferredoxin subunit; Part of the multicomponent 3-phenylpropionate dioxygenase, that converts 3-phenylpropionic acid (PP) and cinnamic acid (CI) into 3-phenylpropionate-dihydrodiol (PP-dihydrodiol) and cinnamic acid- dihydrodiol (CI-dihydrodiol), respectively. This protein seems to be a 2Fe-2S ferredoxin. (106 aa)
yfhLPutative 4Fe-4S cluster-containing protein; Ferredoxins are iron-sulfur proteins that transfer electrons in a wide variety of metabolic reactions. (86 aa)
trxCThioredoxin 2; Efficient electron donor for the essential enzyme ribonucleotide reductase. Is also able to reduce the interchain disulfide bridges of insulin. (139 aa)
lhgOL-2-hydroxyglutarate oxidase; Catalyzes the dehydrogenation of L-2-hydroxyglutarate (L2HG) to alpha-ketoglutarate and couples to the respiratory chain by feeding electrons from the reaction into the membrane quinone pool. Functions in a L-lysine degradation pathway that proceeds via cadaverine, glutarate and L-2-hydroxyglutarate. (422 aa)
nrdHHydrogen donor for NrdEF electron transport system; Electron transport system for the ribonucleotide reductase system NrdEF; Belongs to the glutaredoxin family. (81 aa)
norVAnaerobic nitric oxide reductase flavorubredoxin; Anaerobic nitric oxide reductase; uses NADH to detoxify nitric oxide (NO), protecting several 4Fe-4S NO-sensitive enzymes. Has at least 2 reductase partners, only one of which (NorW, flavorubredoxin reductase) has been identified. NO probably binds to the di-iron center; electrons enter from the reductase at rubredoxin and are transferred sequentially to the FMN center and the di-iron center. Also able to function as an aerobic oxygen reductase; In the N-terminal section; belongs to the zinc metallo- hydrolase group 3 family. (479 aa)
hydNFormate dehydrogenase-H, [4Fe-4S] ferredoxin subunit; Electron transport from formate to hydrogen. (175 aa)
hycFFormate hydrogenlyase complex iron-sulfur protein; Probable electron transfer protein for hydrogenase 3. (180 aa)
hycBHydrogenase 3, Fe-S subunit; Probable electron transfer protein for hydrogenase 3. (203 aa)
ygcOPutative 4Fe-4S cluster-containing protein; Could be a 3Fe-4S cluster-containing protein. Probably participates in a redox process with YgcN, YgcQ and YgcR. (86 aa)
ygcQPutative flavoprotein; May play a role in a redox process; Belongs to the ETF alpha-subunit/FixB family. (286 aa)
ygcRPutative flavoprotein; May play a role in a redox process. (259 aa)
yqcAShort-chain flavodoxin, FMN-binding; Probable electron transporter; Belongs to the flavodoxin family. MioC subfamily. (149 aa)
ygfSPutative oxidoreductase, Fe-S subunit. (162 aa)
fldBFlavodoxin 2; Low-potential electron donor to a number of redox enzymes. Belongs to the flavodoxin family. (173 aa)
hybBPutative hydrogenase 2 cytochrome b type component; Probable b-type cytochrome; Belongs to the NrfD family. (392 aa)
bfdBacterioferritin-associated ferredoxin; Seems to associate with BFR; could be a general redox and/or regulatory component participating in the iron storage mobilization functions of BFR. Could participate in the release or the delivery of iron from/to bacterioferritin (or other iron complexes). (64 aa)
yhjAProtein involved in cytochrome complex assembly. (465 aa)
ysaAPutative hydrogenase, 4Fe-4S ferredoxin-type component. (157 aa)
grxCGlutaredoxin 3; The disulfide bond functions as an electron carrier in the glutathione-dependent synthesis of deoxyribonucleotides by the enzyme ribonucleotide reductase. In addition, it is also involved in reducing some disulfide bonds in a coupled system with glutathione reductase; Belongs to the glutaredoxin family. (83 aa)
mioCFMN-binding protein MioC; Probable electron transporter required for biotin synthase activity. (147 aa)
trxAThioredoxin 1; Participates in various redox reactions through the reversible oxidation of its active center dithiol to a disulfide and catalyzes dithiol-disulfide exchange reactions. (109 aa)
fdoIFormate dehydrogenase-O, cytochrome b556 subunit; Allows to use formate as major electron donor during aerobic respiration. Subunit gamma is probably the cytochrome b556(FDO) component of the formate dehydrogenase. (211 aa)
fdoHFormate dehydrogenase-O, Fe-S subunit; Allows to use formate as major electron donor during aerobic respiration. The beta chain is an electron transfer unit containing 4 cysteine clusters involved in the formation of iron-sulfur centers. Electrons are transferred from the gamma chain to the molybdenum cofactor of the alpha subunit (By similarity). (300 aa)
nrfANitrite reductase, formate-dependent, cytochrome; Catalyzes the reduction of nitrite to ammonia, consuming six electrons in the process. Has very low activity toward hydroxylamine. Has even lower activity toward sulfite. Sulfite reductase activity is maximal at neutral pH (By similarity). (478 aa)
nrfBNitrite reductase, formate-dependent, penta-heme cytochrome c; Plays a role in nitrite reduction. (188 aa)
nrfCFormate-dependent nitrite reductase, 4Fe4S subunit; Probably involved in the transfer of electrons from the quinone pool to the type-c cytochromes. (223 aa)
dsbDThiol:disulfide interchange protein and activator of DsbC; Required to facilitate the formation of correct disulfide bonds in some periplasmic proteins and for the assembly of the periplasmic c-type cytochromes. Acts by transferring electrons from cytoplasmic thioredoxin to the periplasm, thereby maintaining the active site of DsbC, DsbE and DsbG in a reduced state. This transfer involves a cascade of disulfide bond formation and reduction steps; Belongs to the thioredoxin family. DsbD subfamily. (565 aa)
frdBFumarate reductase (anaerobic), Fe-S subunit; Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth. (244 aa)
frdAAnaerobic fumarate reductase catalytic and NAD/flavoprotein subunit; Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth. Belongs to the FAD-dependent oxidoreductase 2 family. FRD/SDH subfamily. (602 aa)
glcFGlycolate oxidase 4Fe-4S iron-sulfur cluster subunit; Component of a complex that catalyzes the oxidation of glycolate to glyoxylate. Is required for E.coli to grow on glycolate as a sole source of carbon. Is also able to oxidize D-lactate ((R)-lactate) with a similar rate. Does not link directly to O(2), and 2,6-dichloroindophenol (DCIP) and phenazine methosulfate (PMS) can act as artificial electron acceptors in vitro, but the physiological molecule that functions as primary electron acceptor during glycolate oxidation is unknown. (407 aa)
cydXCytochrome d (bd-I) ubiquinol oxidase subunit X; Required for correct functioning of cytochrome bd-I oxidase. This protein and AppX may have some functional overlap. (37 aa)
rsxCSoxR iron-sulfur cluster reduction factor component; Part of a membrane-bound complex that couples electron transfer with translocation of ions across the membrane (By similarity). Required to maintain the reduced state of SoxR. Probably transfers electron from NAD(P)H to SoxR. Belongs to the 4Fe4S bacterial-type ferredoxin family. RnfC subfamily. (740 aa)
rsxBSoxR iron-sulfur cluster reduction factor component; Part of a membrane-bound complex that couples electron transfer with translocation of ions across the membrane (By similarity). Required to maintain the reduced state of SoxR. Probably transfers electron from NAD(P)H to SoxR. Belongs to the 4Fe4S bacterial-type ferredoxin family. RnfB subfamily. (192 aa)
rsxASoxR iron-sulfur cluster reduction factor component; Part of a membrane-bound complex that couples electron transfer with translocation of ions across the membrane (By similarity). Required to maintain the reduced state of SoxR. Probably transfers electron from NAD(P)H to SoxR. (193 aa)
ynfGOxidoreductase, Fe-S subunit; Electron transfer subunit of the terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds. (205 aa)
sdhDSuccinate dehydrogenase, membrane subunit, binds cytochrome b556; Membrane-anchoring subunit of succinate dehydrogenase (SDH). (115 aa)
sdhCSuccinate dehydrogenase, membrane subunit, binds cytochrome b556; Membrane-anchoring subunit of succinate dehydrogenase (SDH); Belongs to the cytochrome b560 family. (129 aa)
fldAFlavodoxin 1; Low-potential electron donor to a number of redox enzymes (Potential). Involved in the reactivation of inactive cob(II)alamin in methionine synthase. (176 aa)
cyoACytochrome o ubiquinol oxidase subunit II; Cytochrome bo(3) ubiquinol terminal oxidase is the component of the aerobic respiratory chain of E.coli that predominates when cells are grown at high aeration. Has proton pump activity across the membrane in addition to electron transfer, pumping 2 protons/electron. (315 aa)
cyoBCytochrome o ubiquinol oxidase subunit I; Cytochrome bo(3) ubiquinol terminal oxidase is the component of the aerobic respiratory chain of E.coli that predominates when cells are grown at high aeration. Has proton pump activity across the membrane in addition to electron transfer, pumping 2 protons/electron. Protons are probably pumped via D- and K- channels found in this subunit. (663 aa)
cyoCCytochrome o ubiquinol oxidase subunit III; Cytochrome bo(3) ubiquinol terminal oxidase is the component of the aerobic respiratory chain of E.coli that predominates when cells are grown at high aeration. Has proton pump activity across the membrane in addition to electron transfer, pumping 2 protons/electron. (204 aa)
cyoDCytochrome o ubiquinol oxidase subunit IV; Cytochrome bo(3) ubiquinol terminal oxidase is the component of the aerobic respiratory chain of E.coli that predominates when cells are grown at high aeration. Has proton pump activity across the membrane in addition to electron transfer, pumping 2 protons/electron. (109 aa)
ykgFFerridoxin-like LutB family protein; putative electron transport chain YkgEFG component. (475 aa)
ykgJUPF0153 cysteine cluster protein; Putative ferredoxin; Protein involved in electron carrier activity; To A.calcoaceticus putative ferredoxin. (109 aa)
fixXPutative 4Fe-4S ferredoxin-type protein; Could be part of an electron transfer system required for anaerobic carnitine reduction. Could be a 3Fe-4S cluster-containing protein; Belongs to the bacterial-type ferredoxin family. FixX subfamily. (95 aa)
fixCPutative oxidoreductase; Could be part of an electron transfer system required for anaerobic carnitine reduction; Belongs to the ETF-QO/FixC family. (428 aa)
fixBProtein FixB; Required for anaerobic carnitine reduction. May bring reductant to CaiA; Belongs to the ETF alpha-subunit/FixB family. (313 aa)
fixAAnaerobic carnitine reduction putative electron transfer flavoprotein subunit; Required for anaerobic carnitine reduction. May bring reductant to CaiA; Belongs to the ETF beta-subunit/FixA family. (256 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (10%) [HD]