STRINGSTRING
ileS ileS carA carA carB carB caiC caiC murE murE murF murF murD murD murC murC ddlB ddlB panC panC gluQ gluQ tilS tilS proS proS prpE prpE yaiP yaiP ddlA ddlA queC queC purK purK cysS cysS ybdK ybdK entF entF entE entE entB entB citC citC leuS leuS asnB asnB glnS glnS sucC sucC sucD sucD bioD bioD rimK rimK serS serS asnS asnS pncB pncB pinE pinE puuA puuA pinR pinR paaK paaK pinQ pinQ ynfK ynfK tyrS tyrS fadK fadK pheT pheT pheS pheS thrS thrS nadE nadE fadD fadD aspS aspS argS argS metG metG menE menE folC folC gltX gltX ligA ligA purC purC purM purM guaA guaA hisS hisS purL purL gshA gshA alaS alaS hypF hypF pyrG pyrG tcdA tcdA aas aas lysS lysS fau fau gshB gshB gss gss ygiC ygiC argG argG accC accC trpS trpS rtcB rtcB glyS glyS glyQ glyQ waaL waaL dfp dfp ligB ligB asnA asnA glnA glnA birA birA purD purD acs acs lysU lysU epmA epmA purA purA yjfC yjfC mpl mpl valS valS lplA lplA rtcA rtcA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ileSisoleucyl-tRNA synthetase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). (938 aa)
carACarbamoyl phosphate synthetase small subunit, glutamine amidotransferase; Protein involved in arginine biosynthetic process and pyrimidine nucleotide biosynthetic process. (382 aa)
carBCarbamoyl-phosphate synthase large subunit; Protein involved in arginine biosynthetic process and pyrimidine nucleotide biosynthetic process; Belongs to the CarB family. (1073 aa)
caiCPutative crotonobetaine/carnitine-CoA ligase; Catalyzes the transfer of CoA to carnitine, generating the initial carnitinyl-CoA needed for the CaiB reaction cycle. Also has activity toward crotonobetaine and gamma-butyrobetaine. Belongs to the ATP-dependent AMP-binding enzyme family. (517 aa)
murEUDP-N-acetylmuramoyl-L-alanyl-D-glutamate:meso- diaminopimelate ligase; Catalyzes the addition of meso-diaminopimelic acid to the nucleotide precursor UDP-N-acetylmuramoyl-L-alanyl-D-glutamate (UMAG) in the biosynthesis of bacterial cell-wall peptidoglycan. Is also able to use many meso-diaminopimelate analogs as substrates, although much less efficiently, but not L-lysine. (495 aa)
murFUDP-N-acetylmuramoyl-tripeptide:D-alanyl-D- alanine ligase; Involved in cell wall formation. Catalyzes the final step in the synthesis of UDP-N-acetylmuramoyl-pentapeptide, the precursor of murein. (452 aa)
murDUDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase; Cell wall formation. Catalyzes the addition of glutamate to the nucleotide precursor UDP-N-acetylmuramoyl-L-alanine (UMA). (438 aa)
murCUDP-N-acetylmuramate:L-alanine ligase; Cell wall formation; Belongs to the MurCDEF family. (491 aa)
ddlBD-alanine:D-alanine ligase; Cell wall formation; Belongs to the D-alanine--D-alanine ligase family. (306 aa)
panCPantothenate synthetase; Catalyzes the condensation of pantoate with beta-alanine in an ATP-dependent reaction via a pantoyl-adenylate intermediate. Belongs to the pantothenate synthetase family. (283 aa)
gluQglutamyl-Q tRNA(Asp) synthetase; Catalyzes the tRNA-independent activation of glutamate in presence of ATP and the subsequent transfer of glutamate onto tRNA(Asp). Glutamate is transferred on the 2-amino-5-(4,5-dihydroxy-2- cyclopenten-1-yl) moiety of the queuosine in position 34 of the tRNA(Asp), the wobble position of the QUC anticodon. Does not transfer glutamate to either tRNA(Glu) or tRNA(Gln). The incapacity of the glutamylated tRNA(Asp) to bind elongation factor Tu suggests that it is not involved in ribosomal protein biosynthesis. (308 aa)
tilStRNA(Ile)-lysidine synthetase; Ligates lysine onto the cytidine present at position 34 of the AUA codon-specific tRNA(Ile) that contains the anticodon CAU, in an ATP-dependent manner. Cytidine is converted to lysidine, thus changing the amino acid specificity of the tRNA from methionine to isoleucine. This enzyme is essential for viability. (432 aa)
proSprolyl-tRNA synthetase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). As ProRS can inadvertently accommodate and process non-cognate amino acids such as alanine and cysteine, to avoid such errors it has two additional distinct editing activities against alanine. One activity is designated as 'pretransfer' editing and involves the tRNA(Pro)-independent hydrolysis of activated Ala-AMP. The other activity is designated 'posttransfer' editing and involves dea [...] (572 aa)
prpEpropionate--CoA ligase; Catalyzes the synthesis of propionyl-CoA from propionate and CoA. Also converts acetate to acetyl-CoA but with a lower specific activity (By similarity). (628 aa)
yaiPPutative family 2 glycosyltransferase; Polysaccharide metabolism; Protein involved in polysaccharide biosynthetic process; Belongs to the glycosyltransferase 2 family. (398 aa)
ddlAD-alanine-D-alanine ligase A; Cell wall formation. (364 aa)
queC7-cyano-7-deazaguanine (preQ0) synthase; Catalyzes the ATP-dependent conversion of 7-carboxy-7- deazaguanine (CDG) to 7-cyano-7-deazaguanine (preQ(0)). (231 aa)
purKN5-carboxyaminoimidazole ribonucleotide synthase; Catalyzes the ATP-dependent conversion of 5-aminoimidazole ribonucleotide (AIR) and HCO(3)(-) to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR); Belongs to the PurK/PurT family. (355 aa)
cysSCysteine tRNA synthetase; Protein involved in tRNA aminoacylation for protein translation; Belongs to the class-I aminoacyl-tRNA synthetase family. (461 aa)
ybdKWeak gamma-glutamyl:cysteine ligase; ATP-dependent carboxylate-amine ligase which exhibits weak glutamate--cysteine ligase activity. However, because of the low catalytic rate, the question remains whether L-cysteine is the actual biological substrate; Belongs to the glutamate--cysteine ligase type 2 family. YbdK subfamily. (372 aa)
entFEnterobactin synthase multienzyme complex component, ATP-dependent; Activates the carboxylate group of L-serine via ATP-dependent PPi exchange reactions to the aminoacyladenylate, preparing that molecule for the final stages of enterobactin synthesis. Holo-EntF acts as the catalyst for the formation of the three amide and three ester bonds present in the cyclic (2,3-dihydroxybenzoyl)serine trimer enterobactin, using seryladenylate and acyl-holo-EntB (acylated with 2,3-dihydroxybenzoate by EntE). (1293 aa)
entE2,3-dihydroxybenzoate-AMP ligase component of enterobactin synthase multienzyme complex; Involved in the biosynthesis of the siderophore enterobactin (enterochelin), which is a macrocyclic trimeric lactone of N-(2,3- dihydroxybenzoyl)-serine. The serine trilactone serves as a scaffolding for the three catechol functionalities that provide hexadentate coordination for the tightly ligated iron(2+) atoms. EntE proccesses via a two-step adenylation-ligation reaction (bi-uni-uni-bi ping-pong mechanism). First, it catalyzes the activation of the carboxylate group of 2,3-dihydroxy-benzoate (D [...] (536 aa)
entBIsochorismatase; Involved in the biosynthesis of the siderophore enterobactin (enterochelin), which is a macrocyclic trimeric lactone of N-(2,3- dihydroxybenzoyl)-serine. The serine trilactone serves as a scaffolding for the three catechol functionalities that provide hexadentate coordination for the tightly ligated iron(2+) atoms. EntB is a bifunctional protein that serves as an isochorismate lyase and an aryl carrier protein (ArCP). Catalyzes the conversion of isochorismate to 2,3-dihydro-2,3-dihydroxybenzoate (2,3-diDHB), the precursor of 2,3- dihydroxybenzoate (DHB). In the enterob [...] (285 aa)
citCCitrate lyase ligase; Acetylation of prosthetic group (2-(5''-phosphoribosyl)-3'- dephosphocoenzyme-A) of the gamma subunit of citrate lyase. (352 aa)
leuSLeucine tRNA synthetase; Protein involved in tRNA aminoacylation for protein translation; Belongs to the class-I aminoacyl-tRNA synthetase family. (860 aa)
asnBAsparagine synthetase B; Catalyzes the ATP-dependent conversion of aspartate into asparagine, using glutamine as a source of nitrogen. Can also use ammonia as the nitrogen source in vitro, albeit with lower efficiency. As nucleotide substrates, ATP and dATP are utilized at a similar rate in both the glutamine- and ammonia-dependent reactions, whereas GTP utilization is only 15% that of ATP, and CTP, UTP, ITP and XTP are very poor or not substrates. Also exhibits glutaminase activity. (554 aa)
glnSGlutamine tRNA synthetase; Protein involved in tRNA aminoacylation for protein translation. (554 aa)
sucCsuccinyl-CoA synthetase, beta subunit; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The beta subunit provides nucleotide specificity of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A and phosphate are found in the alpha subunit. Can use either ATP or GTP, but prefers ATP. It can also function in the other direction for anabolic purposes, and this may be particularly impor [...] (388 aa)
sucDsuccinyl-CoA synthetase, NAD(P)-binding, alpha subunit; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The alpha subunit of the enzyme binds the substrates coenzyme A and phosphate, while succinate binding and nucleotide specificity is provided by the beta subunit. Can use either ATP or GTP, but prefers ATP. It can also function in the other direction for anabolic purposes, and this may be particularly importan [...] (289 aa)
bioDDethiobiotin synthetase; Catalyzes a mechanistically unusual reaction, the ATP- dependent insertion of CO2 between the N7 and N8 nitrogen atoms of 7,8- diaminopelargonic acid (DAPA) to form an ureido ring. Only CTP can partially replace ATP while diaminobiotin is only 37% as effective as 7,8-diaminopelargonic acid; Belongs to the dethiobiotin synthetase family. (225 aa)
rimKRibosomal protein S6 modification protein; Is an L-glutamate ligase that catalyzes the ATP-dependent post-translational addition of glutamate residues to the C-terminus of ribosomal protein S6 (RpsF). Is also able to catalyze the synthesis of poly-alpha-glutamate in vitro, via ATP hydrolysis from unprotected glutamate as substrate. The number of glutamate residues added to either RpsF or to poly-alpha-glutamate changes with pH. Belongs to the RimK family. (300 aa)
serSseryl-tRNA synthetase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L- seryl-tRNA(Sec), which will be further converted into selenocysteinyl- tRNA(Sec). (430 aa)
asnSAsparagine tRNA synthetase; Protein involved in tRNA aminoacylation for protein translation. (466 aa)
pncBNicotinate phosphoribosyltransferase; Catalyzes the synthesis of beta-nicotinate D-ribonucleotide from nicotinate and 5-phospho-D-ribose 1-phosphate at the expense of ATP; Belongs to the NAPRTase family. (400 aa)
pinESerine recombinase PinE; This protein catalyzes the inversion of an 1800-bp E.coli DNA fragment, the P region, which can exist in either orientation. The function of the inversion is not yet clear. (184 aa)
puuAGlutamate--putrescine ligase; Involved in the breakdown of putrescine via the biosynthesis of gamma-L-glutamylputrescine. It is able to use several diamines, spermidine and spermine. Absolutely essential to utilize putrescine as both nitrogen and carbon sources and to decrease the toxicity of putrescine, which can lead to inhibition of cell growth and protein synthesis; Belongs to the glutamine synthetase family. (472 aa)
pinRRac prophage; putative site-specific recombinase. (196 aa)
paaKphenylacetyl-CoA ligase; Catalyzes the activation of phenylacetic acid (PA) to phenylacetyl-CoA (PA-CoA). (437 aa)
pinQQin prophage; putative site-specific recombinase; Belongs to the site-specific recombinase resolvase family. (196 aa)
ynfKPutative dethiobiotin synthetase; Catalyzes a mechanistically unusual reaction, the ATP- dependent insertion of CO2 between the N7 and N8 nitrogen atoms of 7,8- diaminopelargonic acid (DAPA) to form an ureido ring. Belongs to the dethiobiotin synthetase family. (231 aa)
tyrStyrosyl-tRNA synthetase; Catalyzes the attachment of L-tyrosine to tRNA(Tyr) in a two- step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr). Can also mischarge tRNA(Tyr) with D-tyrosine, leading to the formation of D-tyrosyl-tRNA(Tyr), which can be hydrolyzed by the D-aminoacyl-tRNA deacylase. In vitro, can also use the non-natural amino acid azatyrosine. (424 aa)
fadKShort chain acyl-CoA synthetase, anaerobic; Catalyzes the esterification, concomitant with transport, of exogenous fatty acids into metabolically active CoA thioesters for subsequent degradation or incorporation into phospholipids. Is maximally active on C6:0, C8:0 and C12:0 fatty acids, while has a low activity on C14-C18 chain length fatty acids. Is involved in the anaerobic beta-oxidative degradation of fatty acids, which allows anaerobic growth of E.coli on fatty acids as a sole carbon and energy source in the presence of nitrate or fumarate as a terminal electron acceptor. Can fun [...] (548 aa)
pheTPhenylalanine tRNA synthetase, beta-subunit; Protein involved in tRNA aminoacylation for protein translation. (795 aa)
pheSPhenylalanine tRNA synthetase, alpha-subunit; Protein involved in tRNA aminoacylation for protein translation. (327 aa)
thrSthreonyl-tRNA synthetase; Catalyzes the attachment of threonine to tRNA(Thr) in a two- step reaction: L-threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr). The rate-limiting step is amino acid activation in the presence of tRNA. The 2'-OH of the acceptor base (adenine 76, A76) of tRNA(Thr) and His-309 collaborate to transfer L-Thr to the tRNA; substitution of 2'-OH of A76 with hydrogen or fluorine decreases transfer efficiency 760 and 100-fold respectively. The zinc ion in the active site discriminates against charging of the isost [...] (642 aa)
nadENAD synthetase, NH3/glutamine-dependent; Catalyzes the ATP-dependent amidation of deamido-NAD to form NAD. Uses ammonia as a nitrogen source. (275 aa)
fadDacyl-CoA synthetase (long-chain-fatty-acid--CoA ligase); Catalyzes the esterification, concomitant with transport, of exogenous long-chain fatty acids into metabolically active CoA thioesters for subsequent degradation or incorporation into phospholipids. Activity is the highest with fatty acid substrates of > 10 carbon atoms. Is involved in the aerobic beta- oxidative degradation of fatty acids, which allows aerobic growth of E.coli on fatty acids as a sole carbon and energy source. (561 aa)
aspSaspartyl-tRNA synthetase; Catalyzes the attachment of L-aspartate to tRNA(Asp) in a two-step reaction: L-aspartate is first activated by ATP to form Asp- AMP and then transferred to the acceptor end of tRNA(Asp). Also mischarges tRNA(Asp) with D-aspartate, although it is a poor substrate ; Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. (590 aa)
argSArginine tRNA synthetase; Protein involved in tRNA aminoacylation for protein translation. (577 aa)
metGmethionyl-tRNA synthetase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation; Belongs to the class-I aminoacyl-tRNA synthetase family. MetG type 1 subfamily. (677 aa)
menEO-succinylbenzoate-CoA ligase; Converts 2-succinylbenzoate (OSB) to 2-succinylbenzoyl-CoA (OSB-CoA); Belongs to the ATP-dependent AMP-binding enzyme family. MenE subfamily. (451 aa)
folCBifunctional folylpolyglutamate synthase/ dihydrofolate synthase; Functions in two distinct reactions of the de novo folate biosynthetic pathway. Catalyzes the addition of a glutamate residue to dihydropteroate (7,8-dihydropteroate or H2Pte) to form dihydrofolate (7,8-dihydrofolate monoglutamate or H2Pte-Glu). Also catalyzes successive additions of L-glutamate to tetrahydrofolate or 10- formyltetrahydrofolate or 5,10-methylenetetrahydrofolate, leading to folylpolyglutamate derivatives. (422 aa)
gltXglutamyl-tRNA synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu). (471 aa)
ligADNA ligase, NAD(+)-dependent; DNA ligase that catalyzes the formation of phosphodiester linkages between 5'-phosphoryl and 3'-hydroxyl groups in double- stranded DNA using NAD as a coenzyme and as the energy source for the reaction. It is essential for DNA replication and repair of damaged DNA; Belongs to the NAD-dependent DNA ligase family. LigA subfamily. (671 aa)
purCPhosphoribosylaminoimidazole-succinocarboxamide synthetase = SAICAR synthetase; Protein involved in purine nucleotide biosynthetic process. (237 aa)
purMPhosphoribosylaminoimidazole synthetase = AIR synthetase; Protein involved in purine nucleotide biosynthetic process; Belongs to the AIR synthase family. (345 aa)
guaAGMP synthetase (glutamine aminotransferase); Catalyzes the synthesis of GMP from XMP. (525 aa)
hisSHistidine tRNA synthetase; Protein involved in tRNA aminoacylation for protein translation. (424 aa)
purLPhosphoribosylformyl-glycineamide synthetase; Phosphoribosylformylglycinamidine synthase involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. (1295 aa)
gshAGlutamate-cysteine ligase; Protein involved in glutathione biosynthetic process; Belongs to the glutamate--cysteine ligase type 1 family. Type 1 subfamily. (518 aa)
alaSalanyl-tRNA synthetase; Catalyzes the attachment of L-alanine to tRNA(Ala) in a two- step reaction: L-alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). AlaRS also incorrectly activates the sterically smaller amino acid glycine as well as the sterically larger amino acid L-serine; generates 2-fold more mischarged Gly than Ser. These mischarged amino acids occur because the of inherent physicochemical limitations on discrimination between closely related amino acids (Ala, Gly and Ser) in the charging step. Attaches Ala to transfer-me [...] (876 aa)
hypFCarbamoyl phosphate phosphatase and [NiFe] hydrogenase maturation protein; Involved in the maturation of [NiFe] hydrogenases. Along with HypE, it catalyzes the synthesis of the CN ligands of the active site iron of [NiFe]-hydrogenases. HypF functions as a carbamoyl transferase using carbamoylphosphate as a substrate and transferring the carboxamido moiety in an ATP-dependent reaction to the thiolate of the C-terminal cysteine of HypE yielding a protein-S-carboxamide. In the absence of any other substrate, displays carbamoyl-phosphate phosphatase activity. (750 aa)
pyrGCTP synthetase; Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Regulates intracellular CTP levels through interactions with the four ribonucleotide triphosphates. (545 aa)
tcdAtRNA threonylcarbamoyladenosine dehydratase; Catalyzes the ATP-dependent dehydration of threonylcarbamoyladenosine at position 37 (t(6)A37) to form cyclic t(6)A37 (ct(6)A37) in tRNAs that read codons beginning with adenine. TcdA is also part of a sulfur transfer pathway; is able to accept sulfur from CsdA directly in vitro, but CsdE might act as the sulfur donor in vivo; Belongs to the HesA/MoeB/ThiF family. (268 aa)
aasFused 2-acylglycerophospho-ethanolamine acyl transferase/acyl-acyl carrier protein synthetase; Plays a role in lysophospholipid acylation. Transfers fatty acids to the 1-position via an enzyme-bound acyl-ACP intermediate in the presence of ATP and magnesium. Its physiological function is to regenerate phosphatidylethanolamine from 2-acyl-glycero-3- phosphoethanolamine (2-acyl-GPE) formed by transacylation reactions or degradation by phospholipase A1. (719 aa)
lysSLysine tRNA synthetase, constitutive; suppressor of ColE1 mutation in primer RNA; Protein involved in tRNA aminoacylation for protein translation; Belongs to the class-II aminoacyl-tRNA synthetase family. (505 aa)
fau5-formyltetrahydrofolate cyclo-ligase family protein; Involved in the removal of 5-formyltetrahydrofolate. In vitro, it is a potent inhibitor of various folate-dependent enzymes in the C1 metabolism network and in vivo it might function as a folate storage. 5-formyltetrahydrofolate is also used as an antifolate rescue agent in cancer chemotherapy. Catalyzes the irreversible ATP-dependent transformation of 5-formyltetrahydrofolate (5-CHO-THF) to form 5,10- methenyltetrahydrofolate (5,10-CH=THF). The reverse reaction is catalyzed by the serine hydroxymethyltransferase GlyA (SHMT). (182 aa)
gshBProtein involved in glutathione biosynthetic process. (316 aa)
gssGlutathionylspermidine amidase and glutathionylspermidine synthetase; Catalyzes the formation of an amide bond between glutathione (GSH) and spermidine coupled with hydrolysis of ATP; also catalyzes the opposing reaction, i.e. the hydrolysis of glutathionylspermidine (Gsp) back to glutathione and spermidine. The amidase active site can also hydrolyze Gsp-disulfide (Gsp-S-S-Gsp) to Gsp-SG and Gsp S-thiolated proteins (GspSSPs) to GSH S-thiolated protein (GSSPs). Likely acts synergistically with glutaredoxin to regulate the redox environment of E.coli and defend against oxidative damage. [...] (619 aa)
ygiCATP-Grasp family ATPase; May be a ligase forming an amide bond. Shows ATPase activity. Despite its similarity to the C-terminal synthetase domain of Gss, is not a glutathionylspermidine (Gsp) synthetase. Cannot synthesize Gsp, glutathione (GSH), or GSH intermediates, from GSH and spermidine, cysteine and glutamate, gamma-glutamylcysteine and spermidine, and gamma-glutamylcysteine and glycine. Does not bind to Gsp. Belongs to the glutathionylspermidine synthase preATP-grasp family. (386 aa)
argGArgininosuccinate synthetase; Protein involved in arginine biosynthetic process; Belongs to the argininosuccinate synthase family. Type 2 subfamily. (447 aa)
accCacetyl-CoA carboxylase, biotin carboxylase subunit; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (449 aa)
trpStryptophanyl-tRNA synthetase; Catalyzes the attachment of tryptophan to tRNA(Trp). Amino acylates tRNA(Trp) with both L- and D-tryptophan, although D-tryptophan is a poor substrate ; Belongs to the class-I aminoacyl-tRNA synthetase family. (334 aa)
rtcBRNA-splicing ligase; GTP-dependent RNA ligase that is involved in tRNA splicing and RNA repair. Joins RNA with 2',3'-cyclic-phosphate or 3'-phosphate ends to RNA with 5'-hydroxy ends. Also acts as a DNA ligase in case of DNA damage by splicing 'dirty' DNA breaks, characterized by 3'- phosphate (or cyclic-phosphate) and 5'-hydroxy ends that cannot be sealed by classical DNA ligases. (408 aa)
glySGlycine tRNA synthetase, beta subunit; Protein involved in tRNA aminoacylation for protein translation; Belongs to the class-II aminoacyl-tRNA synthetase family. (689 aa)
glyQGlycine tRNA synthetase, alpha subunit; Protein involved in tRNA aminoacylation for protein translation; Belongs to the class-II aminoacyl-tRNA synthetase family. (303 aa)
waaLO-antigen ligase; Adds the O-antigen on the glucose group of LPS. (419 aa)
dfpCoenzyme A biosynthesis bifunctional protein CoaBC; Catalyzes two sequential steps in the biosynthesis of coenzyme A. In the first step cysteine is conjugated to 4'- phosphopantothenate to form 4-phosphopantothenoylcysteine. In the second step the latter compound is decarboxylated to form 4'-phosphopantotheine. In the C-terminal section; belongs to the PPC synthetase family. (406 aa)
ligBDNA ligase, NAD(+)-dependent; Catalyzes the formation of phosphodiester linkages between 5'-phosphoryl and 3'-hydroxyl groups in double-stranded DNA using NAD as a coenzyme and as the energy source for the reaction. Belongs to the NAD-dependent DNA ligase family. LigB subfamily. (560 aa)
asnAAsparagine synthetase A; May amidate Asp of the extracellular death factor precursor Asn-Asn-Trp-Asp-Asn to generate Asn-Asn-Trp-Asn-Asn. (330 aa)
glnAGlutamine synthetase; Catalyzes the ATP-dependent biosynthesis of glutamine from glutamate and ammonia. (469 aa)
birABifunctional ligase/repressor BirA; Acts both as a biotin--[acetyl-CoA-carboxylase] ligase and a biotin-operon repressor. In the presence of ATP, BirA activates biotin to form the BirA-biotinyl-5'-adenylate (BirA-bio-5'-AMP or holoBirA) complex. HoloBirA can either transfer the biotinyl moiety to the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase, or bind to the biotin operator site and inhibit transcription of the operon. (321 aa)
purDPhosphoribosylglycinamide synthetase = GAR synthetase; Protein involved in purine nucleotide biosynthetic process; Belongs to the GARS family. (429 aa)
acsacetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. Acs undergoes a two-step reaction. In the first half reaction, Acs combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA. (652 aa)
lysULysine tRNA synthetase, inducible; Also can synthesize a number of adenyl dinucleotides (in particular AppppA). These dinucleotides have been proposed to act as modulators of the heat-shock response and stress response; Belongs to the class-II aminoacyl-tRNA synthetase family. (505 aa)
epmAElongation Factor P Lys34 lysyltransferase; With EpmB is involved in the beta-lysylation step of the post-translational modification of translation elongation factor P (EF- P) on 'Lys-34'. Catalyzes the ATP-dependent activation of (R)-beta- lysine produced by EpmB, forming a lysyl-adenylate, from which the beta-lysyl moiety is then transferred to the epsilon-amino group of EF- P 'Lys-34'. The substrate (R)-beta-lysine is 100-fold more efficient than either (S)-beta-lysine or L-alpha-lysine. Cannot ligate lysine to any tRNA. (325 aa)
purAAdenylosuccinate synthetase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (432 aa)
yjfCATP-Grasp family ATPase; May be a ligase forming an amide bond. Shows ATPase activity. Despite its similarity to the C-terminal synthetase domain of Gss, is not a glutathionylspermidine (Gsp) synthetase. Cannot synthesize Gsp, glutathione (GSH), or GSH intermediates, from GSH and spermidine, cysteine and glutamate, gamma-glutamylcysteine and spermidine, and gamma-glutamylcysteine and glycine. Does not bind to Gsp. Belongs to the glutathionylspermidine synthase preATP-grasp family. (387 aa)
mplUDP-N-acetylmuramate:L-alanyl-gamma-D-glutamyl- meso-diaminopimelate ligase; Reutilizes the intact tripeptide L-alanyl-gamma-D-glutamyl- meso-diaminopimelate by linking it to UDP-N-acetylmuramate. The enzyme can also use the tetrapeptide L-alanyl-gamma-D-glutamyl-meso-2,6- diaminoheptanedioyl-D-alanine or the pentapeptide L-alanyl-gamma-D- glutamyl-meso-2,6-diaminoheptandioyl-D-alanyl-D-alanine in vivo and in vitro; Belongs to the MurCDEF family. Mpl subfamily. (457 aa)
valSvalyl-tRNA synthetase; Catalyzes the attachment of valine to tRNA(Val). As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a 'posttransfer' editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA- dependent manner. (951 aa)
lplALipoate-protein ligase A; Catalyzes both the ATP-dependent activation of exogenously supplied lipoate to lipoyl-AMP and the transfer of the activated lipoyl onto the lipoyl domains of lipoate-dependent enzymes. Is also able to catalyze very poorly the transfer of lipoyl and octanoyl moiety from their acyl carrier protein. (338 aa)
rtcARNA 3'-terminal phosphate cyclase; Catalyzes the conversion of 3'-phosphate to a 2',3'-cyclic phosphodiester at the end of RNA. The mechanism of action of the enzyme occurs in 3 steps: (A) adenylation of the enzyme by ATP; (B) transfer of adenylate to an RNA-N3'P to produce RNA-N3'PP5'A; (C) and attack of the adjacent 2'-hydroxyl on the 3'-phosphorus in the diester linkage to produce the cyclic end product. The biological role of this enzyme is unknown but it is likely to function in some aspects of cellular RNA processing; Belongs to the RNA 3'-terminal cyclase family. Type 1 subfamily. (338 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (20%) [HD]