node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
dmsA | narG | b0894 | b1224 | Dimethyl sulfoxide reductase, anaerobic, subunit A; Catalyzes the reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS). DMSO reductase serves as the terminal reductase under anaerobic conditions, with DMSO being the terminal electron acceptor. Terminal reductase during anaerobic growth on various sulfoxides and N-oxide compounds. Allows E.coli to grow anaerobically on DMSO as respiratory oxidant. | Nitrate reductase 1, alpha subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The alpha chain is the actual site of nitrate reduction. | 0.429 |
dmsA | narH | b0894 | b1225 | Dimethyl sulfoxide reductase, anaerobic, subunit A; Catalyzes the reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS). DMSO reductase serves as the terminal reductase under anaerobic conditions, with DMSO being the terminal electron acceptor. Terminal reductase during anaerobic growth on various sulfoxides and N-oxide compounds. Allows E.coli to grow anaerobically on DMSO as respiratory oxidant. | Nitrate reductase 1, beta (Fe-S) subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The beta chain is an electron transfer unit containing four cysteine clusters involved in the formation of iron-sulfur centers. Electrons are transferred from the gamma chain to the molybdenum cofactor of the alpha subunit. | 0.642 |
dmsA | ynfE | b0894 | b1587 | Dimethyl sulfoxide reductase, anaerobic, subunit A; Catalyzes the reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS). DMSO reductase serves as the terminal reductase under anaerobic conditions, with DMSO being the terminal electron acceptor. Terminal reductase during anaerobic growth on various sulfoxides and N-oxide compounds. Allows E.coli to grow anaerobically on DMSO as respiratory oxidant. | Putative selenate reductase, periplasmic; Terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. | 0.436 |
dmsA | ynfF | b0894 | b1588 | Dimethyl sulfoxide reductase, anaerobic, subunit A; Catalyzes the reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS). DMSO reductase serves as the terminal reductase under anaerobic conditions, with DMSO being the terminal electron acceptor. Terminal reductase during anaerobic growth on various sulfoxides and N-oxide compounds. Allows E.coli to grow anaerobically on DMSO as respiratory oxidant. | S- and N-oxide reductase, A subunit, periplasmic; Terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds. | 0.706 |
narG | dmsA | b1224 | b0894 | Nitrate reductase 1, alpha subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The alpha chain is the actual site of nitrate reduction. | Dimethyl sulfoxide reductase, anaerobic, subunit A; Catalyzes the reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS). DMSO reductase serves as the terminal reductase under anaerobic conditions, with DMSO being the terminal electron acceptor. Terminal reductase during anaerobic growth on various sulfoxides and N-oxide compounds. Allows E.coli to grow anaerobically on DMSO as respiratory oxidant. | 0.429 |
narG | narH | b1224 | b1225 | Nitrate reductase 1, alpha subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The alpha chain is the actual site of nitrate reduction. | Nitrate reductase 1, beta (Fe-S) subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The beta chain is an electron transfer unit containing four cysteine clusters involved in the formation of iron-sulfur centers. Electrons are transferred from the gamma chain to the molybdenum cofactor of the alpha subunit. | 0.999 |
narH | dmsA | b1225 | b0894 | Nitrate reductase 1, beta (Fe-S) subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The beta chain is an electron transfer unit containing four cysteine clusters involved in the formation of iron-sulfur centers. Electrons are transferred from the gamma chain to the molybdenum cofactor of the alpha subunit. | Dimethyl sulfoxide reductase, anaerobic, subunit A; Catalyzes the reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS). DMSO reductase serves as the terminal reductase under anaerobic conditions, with DMSO being the terminal electron acceptor. Terminal reductase during anaerobic growth on various sulfoxides and N-oxide compounds. Allows E.coli to grow anaerobically on DMSO as respiratory oxidant. | 0.642 |
narH | narG | b1225 | b1224 | Nitrate reductase 1, beta (Fe-S) subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The beta chain is an electron transfer unit containing four cysteine clusters involved in the formation of iron-sulfur centers. Electrons are transferred from the gamma chain to the molybdenum cofactor of the alpha subunit. | Nitrate reductase 1, alpha subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The alpha chain is the actual site of nitrate reduction. | 0.999 |
narH | ynfE | b1225 | b1587 | Nitrate reductase 1, beta (Fe-S) subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The beta chain is an electron transfer unit containing four cysteine clusters involved in the formation of iron-sulfur centers. Electrons are transferred from the gamma chain to the molybdenum cofactor of the alpha subunit. | Putative selenate reductase, periplasmic; Terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. | 0.509 |
narH | ynfF | b1225 | b1588 | Nitrate reductase 1, beta (Fe-S) subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The beta chain is an electron transfer unit containing four cysteine clusters involved in the formation of iron-sulfur centers. Electrons are transferred from the gamma chain to the molybdenum cofactor of the alpha subunit. | S- and N-oxide reductase, A subunit, periplasmic; Terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds. | 0.509 |
ynfE | dmsA | b1587 | b0894 | Putative selenate reductase, periplasmic; Terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. | Dimethyl sulfoxide reductase, anaerobic, subunit A; Catalyzes the reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS). DMSO reductase serves as the terminal reductase under anaerobic conditions, with DMSO being the terminal electron acceptor. Terminal reductase during anaerobic growth on various sulfoxides and N-oxide compounds. Allows E.coli to grow anaerobically on DMSO as respiratory oxidant. | 0.436 |
ynfE | narH | b1587 | b1225 | Putative selenate reductase, periplasmic; Terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. | Nitrate reductase 1, beta (Fe-S) subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The beta chain is an electron transfer unit containing four cysteine clusters involved in the formation of iron-sulfur centers. Electrons are transferred from the gamma chain to the molybdenum cofactor of the alpha subunit. | 0.509 |
ynfE | ynfF | b1587 | b1588 | Putative selenate reductase, periplasmic; Terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. | S- and N-oxide reductase, A subunit, periplasmic; Terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds. | 0.993 |
ynfF | dmsA | b1588 | b0894 | S- and N-oxide reductase, A subunit, periplasmic; Terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds. | Dimethyl sulfoxide reductase, anaerobic, subunit A; Catalyzes the reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS). DMSO reductase serves as the terminal reductase under anaerobic conditions, with DMSO being the terminal electron acceptor. Terminal reductase during anaerobic growth on various sulfoxides and N-oxide compounds. Allows E.coli to grow anaerobically on DMSO as respiratory oxidant. | 0.706 |
ynfF | narH | b1588 | b1225 | S- and N-oxide reductase, A subunit, periplasmic; Terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds. | Nitrate reductase 1, beta (Fe-S) subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The beta chain is an electron transfer unit containing four cysteine clusters involved in the formation of iron-sulfur centers. Electrons are transferred from the gamma chain to the molybdenum cofactor of the alpha subunit. | 0.509 |
ynfF | ynfE | b1588 | b1587 | S- and N-oxide reductase, A subunit, periplasmic; Terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds. | Putative selenate reductase, periplasmic; Terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. | 0.993 |