node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
crp | fis | b3357 | b3261 | cAMP-activated global transcription factor, mediator of catabolite repression; A global transcription regulator. Complexes with cyclic AMP (cAMP) which allosterically activates DNA binding (to consensus sequence 5'-AAATGTGATCTAGATCACATTT-3') to directly regulate the transcription of about 300 genes in about 200 operons and indirectly regulate the expression of about half the genome. There are 3 classes of CRP promoters; class I promoters have a single CRP-binding site upstream of the RNA polymerase (RNAP)-binding site, whereas in class II promoters the single CRP- and RNAP-binding site [...] | Global DNA-binding transcriptional dual regulator; Activates ribosomal RNA transcription, as well other genes. Plays a direct role in upstream activation of rRNA promoters. Binds to a recombinational enhancer sequence that is required to stimulate hin- mediated DNA inversion. Prevents initiation of DNA replication from oriC. Binds to hundreds of transcriptionally active and inactive AT- rich sites, approximately half its binding sites are in non-coding DNA, which only accounts for about 10% of the genome. Belongs to the transcriptional regulatory Fis family. | 0.902 |
crp | phoB | b3357 | b0399 | cAMP-activated global transcription factor, mediator of catabolite repression; A global transcription regulator. Complexes with cyclic AMP (cAMP) which allosterically activates DNA binding (to consensus sequence 5'-AAATGTGATCTAGATCACATTT-3') to directly regulate the transcription of about 300 genes in about 200 operons and indirectly regulate the expression of about half the genome. There are 3 classes of CRP promoters; class I promoters have a single CRP-binding site upstream of the RNA polymerase (RNAP)-binding site, whereas in class II promoters the single CRP- and RNAP-binding site [...] | Response regulator in two-component regulatory system with PhoR; This protein is a positive regulator for the phosphate regulon. Transcription of this operon is positively regulated by PhoB and PhoR when phosphate is limited. | 0.746 |
crp | rpoD | b3357 | b3067 | cAMP-activated global transcription factor, mediator of catabolite repression; A global transcription regulator. Complexes with cyclic AMP (cAMP) which allosterically activates DNA binding (to consensus sequence 5'-AAATGTGATCTAGATCACATTT-3') to directly regulate the transcription of about 300 genes in about 200 operons and indirectly regulate the expression of about half the genome. There are 3 classes of CRP promoters; class I promoters have a single CRP-binding site upstream of the RNA polymerase (RNAP)-binding site, whereas in class II promoters the single CRP- and RNAP-binding site [...] | RNA polymerase, sigma 70 (sigma D) factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth. Preferentially transcribes genes associated with fast growth, such as ribosomal operons, other protein-synthesis related genes, rRNA- and tRNA-encoding genes and prfB. Belongs to the sigma-70 factor family. RpoD/SigA subfamily. | 0.999 |
deoA | deoC | b4382 | b4381 | Thymidine phosphorylase; The enzymes which catalyze the reversible phosphorolysis of pyrimidine nucleosides are involved in the degradation of these compounds and in their utilization as carbon and energy sources, or in the rescue of pyrimidine bases for nucleotide synthesis; Belongs to the thymidine/pyrimidine-nucleoside phosphorylase family. | 2-deoxyribose-5-phosphate aldolase, NAD(P)-linked; Catalyzes a reversible aldol reaction between acetaldehyde and D-glyceraldehyde 3-phosphate to generate 2-deoxy-D-ribose 5- phosphate. Can also catalyze the double aldol condensation of three acetaldehyde molecules, leading to the formation of 2,4,6-trideoxyhexose. Belongs to the DeoC/FbaB aldolase family. DeoC type 2 subfamily. | 0.998 |
deoC | deoA | b4381 | b4382 | 2-deoxyribose-5-phosphate aldolase, NAD(P)-linked; Catalyzes a reversible aldol reaction between acetaldehyde and D-glyceraldehyde 3-phosphate to generate 2-deoxy-D-ribose 5- phosphate. Can also catalyze the double aldol condensation of three acetaldehyde molecules, leading to the formation of 2,4,6-trideoxyhexose. Belongs to the DeoC/FbaB aldolase family. DeoC type 2 subfamily. | Thymidine phosphorylase; The enzymes which catalyze the reversible phosphorolysis of pyrimidine nucleosides are involved in the degradation of these compounds and in their utilization as carbon and energy sources, or in the rescue of pyrimidine bases for nucleotide synthesis; Belongs to the thymidine/pyrimidine-nucleoside phosphorylase family. | 0.998 |
fis | crp | b3261 | b3357 | Global DNA-binding transcriptional dual regulator; Activates ribosomal RNA transcription, as well other genes. Plays a direct role in upstream activation of rRNA promoters. Binds to a recombinational enhancer sequence that is required to stimulate hin- mediated DNA inversion. Prevents initiation of DNA replication from oriC. Binds to hundreds of transcriptionally active and inactive AT- rich sites, approximately half its binding sites are in non-coding DNA, which only accounts for about 10% of the genome. Belongs to the transcriptional regulatory Fis family. | cAMP-activated global transcription factor, mediator of catabolite repression; A global transcription regulator. Complexes with cyclic AMP (cAMP) which allosterically activates DNA binding (to consensus sequence 5'-AAATGTGATCTAGATCACATTT-3') to directly regulate the transcription of about 300 genes in about 200 operons and indirectly regulate the expression of about half the genome. There are 3 classes of CRP promoters; class I promoters have a single CRP-binding site upstream of the RNA polymerase (RNAP)-binding site, whereas in class II promoters the single CRP- and RNAP-binding site [...] | 0.902 |
fis | gyrA | b3261 | b2231 | Global DNA-binding transcriptional dual regulator; Activates ribosomal RNA transcription, as well other genes. Plays a direct role in upstream activation of rRNA promoters. Binds to a recombinational enhancer sequence that is required to stimulate hin- mediated DNA inversion. Prevents initiation of DNA replication from oriC. Binds to hundreds of transcriptionally active and inactive AT- rich sites, approximately half its binding sites are in non-coding DNA, which only accounts for about 10% of the genome. Belongs to the transcriptional regulatory Fis family. | DNA gyrase (type II topoisomerase), subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to maintain chromosomes in an underwound state. This makes better substrates for topoisomerase IV (ParC and ParE) which is the main enzyme that unlinks newly replicated chromosomes in E.coli. Gyrase catalyzes the interconversion of other topological isomers of dsDNA rings, including catenanes. Relaxes negatively supercoiled DNA in an ATP-independent manner. E.coli gyrase has higher supercoiling activity than many other bac [...] | 0.493 |
fis | mukB | b3261 | b0924 | Global DNA-binding transcriptional dual regulator; Activates ribosomal RNA transcription, as well other genes. Plays a direct role in upstream activation of rRNA promoters. Binds to a recombinational enhancer sequence that is required to stimulate hin- mediated DNA inversion. Prevents initiation of DNA replication from oriC. Binds to hundreds of transcriptionally active and inactive AT- rich sites, approximately half its binding sites are in non-coding DNA, which only accounts for about 10% of the genome. Belongs to the transcriptional regulatory Fis family. | Chromosome condensin MukBEF, ATPase and DNA-binding subunit; Plays a central role in chromosome condensation, segregation and cell cycle progression. Functions as a homodimer, which is essential for chromosome partition. Involved in negative DNA supercoiling in vivo, and by this means organizes and compacts chromosomes. May achieve or facilitate chromosome segregation by condensation of DNA from both sides of a centrally located replisome during cell division. Stimulates both DNA relaxation and to a lesser extent decatenation activity of topoisomerase IV. | 0.458 |
fis | rpoD | b3261 | b3067 | Global DNA-binding transcriptional dual regulator; Activates ribosomal RNA transcription, as well other genes. Plays a direct role in upstream activation of rRNA promoters. Binds to a recombinational enhancer sequence that is required to stimulate hin- mediated DNA inversion. Prevents initiation of DNA replication from oriC. Binds to hundreds of transcriptionally active and inactive AT- rich sites, approximately half its binding sites are in non-coding DNA, which only accounts for about 10% of the genome. Belongs to the transcriptional regulatory Fis family. | RNA polymerase, sigma 70 (sigma D) factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth. Preferentially transcribes genes associated with fast growth, such as ribosomal operons, other protein-synthesis related genes, rRNA- and tRNA-encoding genes and prfB. Belongs to the sigma-70 factor family. RpoD/SigA subfamily. | 0.822 |
fis | topA | b3261 | b1274 | Global DNA-binding transcriptional dual regulator; Activates ribosomal RNA transcription, as well other genes. Plays a direct role in upstream activation of rRNA promoters. Binds to a recombinational enhancer sequence that is required to stimulate hin- mediated DNA inversion. Prevents initiation of DNA replication from oriC. Binds to hundreds of transcriptionally active and inactive AT- rich sites, approximately half its binding sites are in non-coding DNA, which only accounts for about 10% of the genome. Belongs to the transcriptional regulatory Fis family. | DNA topoisomerase I, omega subunit; Releases the supercoiling and torsional tension of DNA, which is introduced during the DNA replication and transcription, by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA- (5'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 3'-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand, thus re [...] | 0.635 |
gyrA | fis | b2231 | b3261 | DNA gyrase (type II topoisomerase), subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to maintain chromosomes in an underwound state. This makes better substrates for topoisomerase IV (ParC and ParE) which is the main enzyme that unlinks newly replicated chromosomes in E.coli. Gyrase catalyzes the interconversion of other topological isomers of dsDNA rings, including catenanes. Relaxes negatively supercoiled DNA in an ATP-independent manner. E.coli gyrase has higher supercoiling activity than many other bac [...] | Global DNA-binding transcriptional dual regulator; Activates ribosomal RNA transcription, as well other genes. Plays a direct role in upstream activation of rRNA promoters. Binds to a recombinational enhancer sequence that is required to stimulate hin- mediated DNA inversion. Prevents initiation of DNA replication from oriC. Binds to hundreds of transcriptionally active and inactive AT- rich sites, approximately half its binding sites are in non-coding DNA, which only accounts for about 10% of the genome. Belongs to the transcriptional regulatory Fis family. | 0.493 |
gyrA | gyrB | b2231 | b3699 | DNA gyrase (type II topoisomerase), subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to maintain chromosomes in an underwound state. This makes better substrates for topoisomerase IV (ParC and ParE) which is the main enzyme that unlinks newly replicated chromosomes in E.coli. Gyrase catalyzes the interconversion of other topological isomers of dsDNA rings, including catenanes. Relaxes negatively supercoiled DNA in an ATP-independent manner. E.coli gyrase has higher supercoiling activity than many other bac [...] | DNA gyrase, subunit B; DNA gyrase negatively supercoils closed circular double- stranded DNA in an ATP-dependent manner to maintain chromosomes in an underwound state. This makes better substrates for topoisomerase 4 (ParC and ParE) which is the main enzyme that unlinks newly replicated chromosomes in E.coli. Gyrase catalyzes the interconversion of other topological isomers of double-stranded DNA rings, including catenanes. Relaxes negatively supercoiled DNA in an ATP-independent manner. E.coli gyrase has higher supercoiling activity than other characterized bacterial gyrases; at compa [...] | 0.999 |
gyrA | ileS | b2231 | b0026 | DNA gyrase (type II topoisomerase), subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to maintain chromosomes in an underwound state. This makes better substrates for topoisomerase IV (ParC and ParE) which is the main enzyme that unlinks newly replicated chromosomes in E.coli. Gyrase catalyzes the interconversion of other topological isomers of dsDNA rings, including catenanes. Relaxes negatively supercoiled DNA in an ATP-independent manner. E.coli gyrase has higher supercoiling activity than many other bac [...] | isoleucyl-tRNA synthetase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). | 0.503 |
gyrA | mukB | b2231 | b0924 | DNA gyrase (type II topoisomerase), subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to maintain chromosomes in an underwound state. This makes better substrates for topoisomerase IV (ParC and ParE) which is the main enzyme that unlinks newly replicated chromosomes in E.coli. Gyrase catalyzes the interconversion of other topological isomers of dsDNA rings, including catenanes. Relaxes negatively supercoiled DNA in an ATP-independent manner. E.coli gyrase has higher supercoiling activity than many other bac [...] | Chromosome condensin MukBEF, ATPase and DNA-binding subunit; Plays a central role in chromosome condensation, segregation and cell cycle progression. Functions as a homodimer, which is essential for chromosome partition. Involved in negative DNA supercoiling in vivo, and by this means organizes and compacts chromosomes. May achieve or facilitate chromosome segregation by condensation of DNA from both sides of a centrally located replisome during cell division. Stimulates both DNA relaxation and to a lesser extent decatenation activity of topoisomerase IV. | 0.428 |
gyrA | parC | b2231 | b3019 | DNA gyrase (type II topoisomerase), subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to maintain chromosomes in an underwound state. This makes better substrates for topoisomerase IV (ParC and ParE) which is the main enzyme that unlinks newly replicated chromosomes in E.coli. Gyrase catalyzes the interconversion of other topological isomers of dsDNA rings, including catenanes. Relaxes negatively supercoiled DNA in an ATP-independent manner. E.coli gyrase has higher supercoiling activity than many other bac [...] | DNA topoisomerase IV, subunit A; Topoisomerase IV is essential for chromosome segregation; it is the principal protein responsible for decatenating newly replicated chromosomes. It relaxes supercoiled DNA. MukB stimulates the relaxation activity of topoisomerase IV and also has a modest effect on decatenation. Belongs to the type II topoisomerase GyrA/ParC subunit family. ParC type 1 subfamily. | 0.885 |
gyrA | parE | b2231 | b3030 | DNA gyrase (type II topoisomerase), subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to maintain chromosomes in an underwound state. This makes better substrates for topoisomerase IV (ParC and ParE) which is the main enzyme that unlinks newly replicated chromosomes in E.coli. Gyrase catalyzes the interconversion of other topological isomers of dsDNA rings, including catenanes. Relaxes negatively supercoiled DNA in an ATP-independent manner. E.coli gyrase has higher supercoiling activity than many other bac [...] | DNA topoisomerase IV, subunit B; Topoisomerase IV is essential for chromosome segregation; it is the principal protein responsible for decatenating newly replicated chromosomes. It relaxes supercoiled DNA. MukB stimulates the relaxation activity of topoisomerase IV and also has a modest effect on decatenation. Belongs to the type II topoisomerase family. ParE type 1 subfamily. | 0.999 |
gyrA | rpoD | b2231 | b3067 | DNA gyrase (type II topoisomerase), subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to maintain chromosomes in an underwound state. This makes better substrates for topoisomerase IV (ParC and ParE) which is the main enzyme that unlinks newly replicated chromosomes in E.coli. Gyrase catalyzes the interconversion of other topological isomers of dsDNA rings, including catenanes. Relaxes negatively supercoiled DNA in an ATP-independent manner. E.coli gyrase has higher supercoiling activity than many other bac [...] | RNA polymerase, sigma 70 (sigma D) factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth. Preferentially transcribes genes associated with fast growth, such as ribosomal operons, other protein-synthesis related genes, rRNA- and tRNA-encoding genes and prfB. Belongs to the sigma-70 factor family. RpoD/SigA subfamily. | 0.783 |
gyrA | topA | b2231 | b1274 | DNA gyrase (type II topoisomerase), subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to maintain chromosomes in an underwound state. This makes better substrates for topoisomerase IV (ParC and ParE) which is the main enzyme that unlinks newly replicated chromosomes in E.coli. Gyrase catalyzes the interconversion of other topological isomers of dsDNA rings, including catenanes. Relaxes negatively supercoiled DNA in an ATP-independent manner. E.coli gyrase has higher supercoiling activity than many other bac [...] | DNA topoisomerase I, omega subunit; Releases the supercoiling and torsional tension of DNA, which is introduced during the DNA replication and transcription, by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA- (5'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 3'-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand, thus re [...] | 0.877 |
gyrB | gyrA | b3699 | b2231 | DNA gyrase, subunit B; DNA gyrase negatively supercoils closed circular double- stranded DNA in an ATP-dependent manner to maintain chromosomes in an underwound state. This makes better substrates for topoisomerase 4 (ParC and ParE) which is the main enzyme that unlinks newly replicated chromosomes in E.coli. Gyrase catalyzes the interconversion of other topological isomers of double-stranded DNA rings, including catenanes. Relaxes negatively supercoiled DNA in an ATP-independent manner. E.coli gyrase has higher supercoiling activity than other characterized bacterial gyrases; at compa [...] | DNA gyrase (type II topoisomerase), subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to maintain chromosomes in an underwound state. This makes better substrates for topoisomerase IV (ParC and ParE) which is the main enzyme that unlinks newly replicated chromosomes in E.coli. Gyrase catalyzes the interconversion of other topological isomers of dsDNA rings, including catenanes. Relaxes negatively supercoiled DNA in an ATP-independent manner. E.coli gyrase has higher supercoiling activity than many other bac [...] | 0.999 |
gyrB | ileS | b3699 | b0026 | DNA gyrase, subunit B; DNA gyrase negatively supercoils closed circular double- stranded DNA in an ATP-dependent manner to maintain chromosomes in an underwound state. This makes better substrates for topoisomerase 4 (ParC and ParE) which is the main enzyme that unlinks newly replicated chromosomes in E.coli. Gyrase catalyzes the interconversion of other topological isomers of double-stranded DNA rings, including catenanes. Relaxes negatively supercoiled DNA in an ATP-independent manner. E.coli gyrase has higher supercoiling activity than other characterized bacterial gyrases; at compa [...] | isoleucyl-tRNA synthetase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). | 0.562 |