Your Input: | |||||
rnd | Ribonuclease D; Exonuclease involved in the 3' processing of various precursor tRNAs. Initiates hydrolysis at the 3'-terminus of an RNA molecule and releases 5'-mononucleotides; Belongs to the RNase D family. (375 aa) | ||||
secM | Regulator of secA translation; Regulates secA expression by translational coupling of the secM secA operon. Ribosomes translating the C-terminal region of secM can disrupt an RNA repressor helix that normally blocks secA translation initiation, derepressing the expression of secA. Translational pausing of secM at Pro-166 under secretion-limiting conditions increases the duration of the disruption and thus increases secA expression. This is controlled by interaction of the secM signal peptide with secA and the translocon, possibly by secA pulling the paused secM out of the ribosome. The [...] (170 aa) | ||||
pcnB | poly(A) polymerase; Adds poly(A) tail to the 3' end of many RNAs, which usually targets these RNAs for decay. Plays a significant role in the global control of gene expression, through influencing the rate of transcript degradation, and in the general RNA quality control. Rho-independent transcription terminators may serve as polyadenylation signals. Seems to be involved in plasmid copy number control. Belongs to the tRNA nucleotidyltransferase/poly(A) polymerase family. (465 aa) | ||||
yafQ | mRNA interferase toxin of toxin-antitoxin pair YafQ/DinJ; Toxic component of a type II toxin-antitoxin (TA) system. A sequence-specific mRNA endoribonuclease that inhibits translation elongation and induces bacterial stasis. Cleavage occurs between the second and third residue of the Lys codon followed by a G or A (5'AAA(G/A)3'), is reading-frame dependent and occurs within the 5' end of most mRNAs. Ribosome-binding confers the sequence specificity and reading frame- dependence. When overexpressed in liquid media YafQ partially inhibits protein synthesis, with a reduction in growth rat [...] (92 aa) | ||||
gpt | Xanthine phosphoribosyltransferase; Acts on guanine, xanthine and to a lesser extent hypoxanthine. (152 aa) | ||||
rna | Ribonuclease I; One of the few RNases that cleaves the phosphodiester bond between any two nucleotide. Shows a preference for cytidylic or guanylic acid. (268 aa) | ||||
ybeL | DUF1451 family protein; Putative alpha helical protein. (160 aa) | ||||
rne | Endoribonuclease; Endoribonuclease that plays a central role in RNA processing and decay. Required for the maturation of 5S and 16S rRNAs and the majority of tRNAs. Also involved in the degradation of most mRNAs. Can also process other RNA species, such as RNAI, a molecule that controls the replication of ColE1 plasmid, and the cell division inhibitor DicF- RNA. It initiates the decay of RNAs by cutting them internally near their 5'-end. It is able to remove poly(A) tails by an endonucleolytic process. Required to initiate rRNA degradation during both starvation and quality control; ac [...] (1061 aa) | ||||
yceF | m(7)GTP pyrophosphatase; Nucleoside triphosphate pyrophosphatase that hydrolyzes 7- methyl-GTP (m(7)GTP). May have a dual role in cell division arrest and in preventing the incorporation of modified nucleotides into cellular nucleic acids. Belongs to the Maf family. YceF subfamily. (194 aa) | ||||
rnb | Ribonuclease II; Involved in mRNA degradation. Hydrolyzes single-stranded polyribonucleotides processively in the 3' to 5' direction. RNases 2 and R (rnr) contribute to rRNA degradation during starvation, while RNase R and PNPase (pnp) are the major contributors to quality control of rRNA during steady state growth. This RNase is required to decrease expression of RNase PH (rnp) at 42 degrees Celsius during starvation, which in turn represses rRNA degradation. Belongs to the RNR ribonuclease family. RNase II subfamily. (644 aa) | ||||
hrpA | Putative ATP-dependent helicase; Not yet known; Belongs to the DEAD box helicase family. DEAH subfamily. (1300 aa) | ||||
relE | Qin prophage; Toxic component of a type II toxin-antitoxin (TA) system. A sequence-specific, ribosome-dependent mRNA endoribonuclease that inhibits translation during amino acid starvation (the stringent response). In vitro acts by cleaving mRNA with high codon specificity in the ribosomal A site between positions 2 and 3. The stop codon UAG is cleaved at a fast rate while UAA and UGA are cleaved with intermediate and slow rates. In vitro mRNA cleavage can also occur in the ribosomal E site after peptide release from peptidyl- tRNA in the P site as well as on free 30S subunits. In vivo [...] (95 aa) | ||||
rnt | RNase T; Trims short 3' overhangs of a variety of RNA species, leaving a one or two nucleotide 3' overhang. Responsible for the end-turnover of tRNA: specifically removes the terminal AMP residue from uncharged tRNA (tRNA-C-C-A). Also appears to be involved in tRNA biosynthesis, especially in strains lacking other exoribonucleases. (215 aa) | ||||
pykF | Pyruvate kinase I (formerly F), fructose stimulated; Protein involved in glycolysis, fermentation and anaerobic respiration. (470 aa) | ||||
pykA | Pyruvate kinase II, glucose stimulated; Protein involved in glycolysis, fermentation and anaerobic respiration. (480 aa) | ||||
rbn | RNase BN, tRNA processing enzyme; Zinc phosphodiesterase, which has both exoribonuclease and endoribonuclease activities, depending on the nature of the substrate and of the added divalent cation, and on its 3'-terminal structure. Can process the 3' termini of both CCA-less and CCA-containing tRNA precursors. CCA-less tRNAs are cleaved endonucleolytically after the discriminator base, whereas residues following the CCA sequence can be removed exonucleolytically or endonucleolytically in CCA-containing molecules. Does not remove the CCA sequence. May also be involved in the degradation [...] (305 aa) | ||||
rnc | RNase III; Digests double-stranded RNA formed within single-strand substrates, but not RNA-DNA hybrids. Involved in the processing of rRNA precursors, viral transcripts, some mRNAs and at least 1 tRNA (metY, a minor form of tRNA-init-Met). Cleaves the 30S primary rRNA transcript to yield the immediate precursors to the 16S and 23S rRNAs; cleavage can occur in assembled 30S, 50S and even 70S subunits and is influenced by the presence of ribosomal proteins. The E.coli enzyme does not cleave R.capsulatus rRNA precursor, although R.capsulatus will complement an E.coli disruption, showing s [...] (226 aa) | ||||
mazF | mRNA interferase toxin, antitoxin is MazE; Toxic component of a type II toxin-antitoxin (TA) system. A sequence-specific endoribonuclease it inhibits protein synthesis by cleaving mRNA and inducing bacterial stasis. It is stable, single- strand specific with mRNA cleavage independent of the ribosome, although translation enhances cleavage for some mRNAs. Cleavage occurs at the 5'-end of ACA sequences, yielding a 2',3'-cyclic phosphate and a free 5'-OH, although cleavage can also occur on the 3'-end of the first A. Digests 16S rRNA in vivo 43 nts upstream of the C- terminus; this remove [...] (111 aa) | ||||
yhaV | Toxin of the SohB(PrlF)-YhaV toxin-antitoxin system; Toxic component of a type II toxin-antitoxin (TA) system. Has RNase activity in vitro. Overexpression leads to growth arrest after 30 minutes; these effects are overcome by concomitant expression of antitoxin SohA (PrlF). Massive overexpression is toxic. Unlike most other characterized TA systems degrades rRNA, and co-folding of the both TA proteins is necessary in vitro for inhibition of the RNase activity. It is not known if it has any sequence-specificity. Acts as a transcription factor. The YhaV/PrlF complex binds the prlF-yhaV o [...] (154 aa) | ||||
fusA | Protein chain elongation factor EF-G, GTP-binding; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase f [...] (704 aa) | ||||
rhlB | ATP-dependent RNA helicase; DEAD-box RNA helicase involved in RNA degradation. Has RNA- dependent ATPase activity and unwinds double-stranded RNA. Belongs to the DEAD box helicase family. RhlB subfamily. (421 aa) | ||||
orn | Oligoribonuclease; 3'-to-5' exoribonuclease specific for small oligoribonucleotides 2 to 5 nucleotides in length, as well as small (2 to 5 nucleotides) ssDNA oligomers. Probably responsible for the final step in mRNA degradation. (181 aa) | ||||
rnr | Exoribonuclease R, RNase R; 3'-5' exoribonuclease that releases 5'-nucleoside monophosphates and is involved in maturation of structured RNAs (rRNAs, tRNAs and SsrA/tmRNA). In stationary phase, involved in the post- transcriptional regulation of ompA mRNA stability. Shortens RNA processively to di- and trinucleotides. In vitro, exhibits helicase activity, which is independent of its RNase activity. RNases 2 and R (rnb and this entry) contribute to rRNA degradation during starvation, while RNase R and PNPase (this entry and pnp) are the major contributors to quality control of rRNA duri [...] (813 aa) | ||||
chpB | Toxin of the ChpB-ChpS toxin-antitoxin system; Toxic component of a type II toxin-antitoxin (TA) system. ChpB is a sequence-specific mRNA and (weak) tmRNA endoribonuclease that inhibits protein synthesis and induces bacterial stasis. Cleavage is independent of the ribosome. Cleavage occurs at ACY sequences where Y is not C. The endoribonuclease activity is not as strong as that of MazF. The endoribonuclease activity (a toxin) is inhibited by its labile cognate antitoxin ChpS. Toxicity results when the levels of ChpS decrease in the cell, leading to mRNA degradation. Both ChpS and ChpB [...] (116 aa) | ||||
yoeB | Toxin of the YoeB-YefM toxin-antitoxin system; Toxic component of a type II toxin-antitoxin (TA) system. Its mode of function is controversial; it has been proposed to be an mRNA interferase but also an inhibitor of translation initiation. When overproduced in wild-type cells, inhibits bacterial growth and translation by cleavage of mRNA molecules while it has a weak effect on colony forming ability. Overproduction of Lon protease specifically activates YoeB-dependent mRNA cleavage, leading to lethality. YefM binds to the promoter region of the yefM-yeoB operon to repress transcription [...] (84 aa) |