STRINGSTRING
purR purR grxA grxA moaA moaA hemH hemH cheY cheY sufA sufA sufB sufB sufC sufC sufD sufD cysB cysB bolA bolA dnaK dnaK grxC grxC arsC arsC glpE glpE cysG cysG iscR iscR iscS iscS iscU iscU iscA iscA hscB hscB hscA hscA fdx fdx
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
purRTranscriptional repressor, hypoxanthine-binding; Is the main repressor of the genes involved in the de novo synthesis of purine nucleotides, regulating purB, purC, purEK, purF, purHD, purL, purMN and guaBA expression. In addition, it participates in the regulation or coregulation of genes involved in de novo pyrimidine nucleotide biosynthesis, salvage and uptake (pyrC, pyrD, carAB and codBA), and of several genes encoding enzymes necessary for nucleotide and polyamine biosynthesis (prsA, glyA, gcvTHP, speA, glnB). Binds to a 16-bp palindromic sequence located within the promoter region [...] (341 aa)
grxAGlutaredoxin 1, redox coenzyme for ribonucleotide reductase (RNR1a); The disulfide bond functions as an electron carrier in the glutathione-dependent synthesis of deoxyribonucleotides by the enzyme ribonucleotide reductase. In addition, it is also involved in reducing some disulfide bonds in a coupled system with glutathione reductase; Belongs to the glutaredoxin family. (85 aa)
moaAMolybdopterin biosynthesis protein A; Catalyzes, together with MoaC, the conversion of 5'-GTP to cyclic pyranopterin monophosphate (cPMP or molybdopterin precursor Z). (329 aa)
hemHFerrochelatase; Catalyzes the ferrous insertion into protoporphyrin IX; Belongs to the ferrochelatase family. (320 aa)
cheYChemotaxis regulator transmitting signal to flagellar motor component; Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. In its active (phosphorylated or acetylated) form, CheY exhibits enhanced binding to a switch component, FliM, at the flagellar motor which induces a change from counterclockwise to clockwise flagellar rotation. Overexpression of CheY in association with MotA and MotB improves motility of a ycgR disruption, suggesting there is an interaction (direct or indirect) between the c-di-GMP-binding flagellar brake protein and th [...] (129 aa)
sufAFe-S cluster assembly protein. (122 aa)
sufBComponent of SufBCD Fe-S cluster assembly scaffold; The SufBCD complex acts synergistically with SufE to stimulate the cysteine desulfurase activity of SufS. The SufBCD complex contributes to the assembly or repair of oxygen-labile iron-sulfur clusters under oxidative stress. May facilitate iron uptake from extracellular iron chelators under iron limitation. (495 aa)
sufCSufBCD Fe-S cluster assembly scaffold protein, ATP-binding protein; Has low ATPase activity. The SufBCD complex acts synergistically with SufE to stimulate the cysteine desulfurase activity of SufS. The SufBCD complex contributes to the assembly or repair of oxygen-labile iron-sulfur clusters under oxidative stress. May facilitate iron uptake from extracellular iron chelators under iron limitation. (248 aa)
sufDComponent of SufBCD Fe-S cluster assembly scaffold; The SufBCD complex acts synergistically with SufE to stimulate the cysteine desulfurase activity of SufS. The SufBCD complex contributes to the assembly or repair of oxygen-labile iron-sulfur clusters under oxidative stress. May facilitate iron uptake from extracellular iron chelators under iron limitation. Required for the stability of the FhuF protein. (423 aa)
cysBN-acetylserine-responsive cysteine regulon transcriptional activator; This protein is a positive regulator of gene expression for the cysteine regulon, a system of 10 or more loci involved in the biosynthesis of L-cysteine from inorganic sulfate. The inducer for CysB is N-acetylserine. CysB inhibits its own transcription. (324 aa)
bolAStationary-phase morphogene, transcriptional repressor for mreB; Transcriptional regulator that plays an important role in general stress response. Has many effects on cell morphology, cell growth and cell division. Acts by regulating the transcription of many genes, including dacA (PBP-5), dacC (PBP-6), ampC and mreB. Probably involved in the coordination of genes that adapt the cell physiology in order to enhance cell adaptation and survival under stress conditions. Essential for normal cell morphology in stationary phase and under conditions of starvation. Also regulates a complex n [...] (105 aa)
dnaKChaperone Hsp70, with co-chaperone DnaJ; Plays an essential role in the initiation of phage lambda DNA replication, where it acts in an ATP-dependent fashion with the DnaJ protein to release lambda O and P proteins from the preprimosomal complex. DnaK is also involved in chromosomal DNA replication, possibly through an analogous interaction with the DnaA protein. Also participates actively in the response to hyperosmotic shock. (638 aa)
grxCGlutaredoxin 3; The disulfide bond functions as an electron carrier in the glutathione-dependent synthesis of deoxyribonucleotides by the enzyme ribonucleotide reductase. In addition, it is also involved in reducing some disulfide bonds in a coupled system with glutathione reductase; Belongs to the glutaredoxin family. (83 aa)
arsCArsenate reductase; Reduction of arsenate [As(V)] to arsenite [As(III)]. This protein expands the substrate specificity of ArsAB pump which can extrude arsenite and antimonite to allow for arsenate pumping and resistance (By similarity); Belongs to the ArsC family. (141 aa)
glpEThiosulfate:cyanide sulfurtransferase (rhodanese); Catalyzes, although with low efficiency, the sulfur transfer reaction from thiosulfate to cyanide. The relatively low affinity of GlpE for both thiosulfate and cyanide suggests that these compounds are not the physiological substrates. Thioredoxin 1 or related dithiol proteins could instead be the physiological sulfur-acceptor substrate. Possible association with the metabolism of glycerol-phosphate remains to be elucidated. (108 aa)
cysGUroporphyrinogen-III C-methyltransferase; Multifunctional enzyme that catalyzes the SAM-dependent methylations of uroporphyrinogen III at position C-2 and C-7 to form precorrin-2 via precorrin-1. Then it catalyzes the NAD-dependent ring dehydrogenation of precorrin-2 to yield sirohydrochlorin. Finally, it catalyzes the ferrochelation of sirohydrochlorin to yield siroheme. In the N-terminal section; belongs to the precorrin-2 dehydrogenase / sirohydrochlorin ferrochelatase family. (457 aa)
iscRIsc operon transcriptional repressor; Regulates the transcription of several operons and genes involved in the biogenesis of Fe-S clusters and Fe-S-containing proteins. Transcriptional repressor of the iscRSUA operon, which is involved in the assembly of Fe-S clusters into Fe-S proteins. In its apoform, under conditions of oxidative stress or iron deprivation, it activates the suf operon, which is a second operon involved in the assembly of Fe-S clusters. Represses its own transcription as well as that of toxin rnlA. (162 aa)
iscSCysteine desulfurase (tRNA sulfurtransferase), PLP-dependent; Master enzyme that delivers sulfur to a number of partners involved in Fe-S cluster assembly, tRNA modification or cofactor biosynthesis. Catalyzes the removal of elemental sulfur from cysteine to produce alanine. Functions as a sulfur delivery protein for Fe-S cluster synthesis onto IscU, an Fe-S scaffold assembly protein, as well as other S acceptor proteins. Preferentially binds to disordered IscU on which the Fe-S is assembled, IscU converts to the structured state and then dissociates from IscS to transfer the Fe-S to a [...] (404 aa)
iscUIron-sulfur cluster assembly scaffold protein; A scaffold on which IscS assembles Fe-S clusters. Exists as 2 interconverting forms, a structured (S) and disordered (D) form. The D- state is the preferred substrate for IscS. Converts to the S-state when an Fe-S cluster is assembled, which helps it dissociate from IscS to transfer the Fe-S to an acceptor. It is likely that Fe-S cluster coordination is flexible as the role of this complex is to build and then hand off Fe-S clusters; Belongs to the NifU family. (128 aa)
iscAFeS cluster assembly protein; Is able to transfer iron-sulfur clusters to apo-ferredoxin. Multiple cycles of [2Fe2S] cluster formation and transfer are observed, suggesting that IscA acts catalytically. Recruits intracellular free iron so as to provide iron for the assembly of transient iron-sulfur cluster in IscU in the presence of IscS, L-cysteine and the thioredoxin reductase system TrxA/TrxB; Belongs to the HesB/IscA family. (107 aa)
hscBHscA co-chaperone, J domain-containing protein Hsc56; Co-chaperone involved in the maturation of iron-sulfur cluster-containing proteins. Seems to help targeting proteins to be folded toward HscA; Belongs to the HscB family. (171 aa)
hscADnaK-like molecular chaperone specific for IscU; Chaperone involved in the maturation of iron-sulfur cluster- containing proteins. Has a low intrinsic ATPase activity which is markedly stimulated by HscB. Involved in the maturation of IscU; Belongs to the heat shock protein 70 family. (616 aa)
fdx[2Fe-2S] ferredoxin; Ferredoxin are iron-sulfur proteins that transfer electrons in a wide variety of metabolic reactions. Although the function of this ferredoxin is unknown it is probable that it has a role as a cellular electron transfer protein. Involved in the in vivo assembly of the Fe-S clusters in a wide variety of iron-sulfur proteins. (111 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (20%) [HD]