node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
clpP | clpX | b0437 | b0438 | Proteolytic subunit of ClpA-ClpP and ClpX-ClpP ATP-dependent serine proteases; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. May play the role of a master protease which is attracted to different substrates by different specificity factors such as ClpA or ClpX. Participates in the final steps of RseA-sigma-E degradation, liberating sigma-E to induce the extracytoplasmic-stress response. Degrades antitoxin MazE. | ATPase and specificity subunit of ClpX-ClpP ATP-dependent serine protease; ATP-dependent specificity component of the Clp protease. Uses cycles of ATP binding and hydrolysis to unfold proteins and translocate them to the ClpP protease. It directs the protease to specific substrates both with and without the help of adapter proteins such as SspB. Participates in the final steps of RseA-sigma-E degradation, liberating sigma-E to induce the extracytoplasmic-stress response. It may bind to the lambda O substrate protein and present it to the ClpP protease in a form that can be recognized a [...] | 0.999 |
clpP | ftsH | b0437 | b3178 | Proteolytic subunit of ClpA-ClpP and ClpX-ClpP ATP-dependent serine proteases; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. May play the role of a master protease which is attracted to different substrates by different specificity factors such as ClpA or ClpX. Participates in the final steps of RseA-sigma-E degradation, liberating sigma-E to induce the extracytoplasmic-stress response. Degrades antitoxin MazE. | Protease, ATP-dependent zinc-metallo; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins. Degrades a few membrane proteins that have not been assembled into complexes such as SecY, F(0) ATPase subunit a and YccA, and also cytoplasmic proteins sigma-32, LpxC, KdtA and phage lambda cII protein among others. Degrades membrane proteins in a processive manner starting at either the N- or C-terminus; recognition requires a cytoplasmic tail of about 20 residues with no apparent [...] | 0.948 |
clpP | hslU | b0437 | b3931 | Proteolytic subunit of ClpA-ClpP and ClpX-ClpP ATP-dependent serine proteases; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. May play the role of a master protease which is attracted to different substrates by different specificity factors such as ClpA or ClpX. Participates in the final steps of RseA-sigma-E degradation, liberating sigma-E to induce the extracytoplasmic-stress response. Degrades antitoxin MazE. | Molecular chaperone and ATPase component of HslUV protease; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis. | 0.997 |
clpP | sspB | b0437 | b3228 | Proteolytic subunit of ClpA-ClpP and ClpX-ClpP ATP-dependent serine proteases; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. May play the role of a master protease which is attracted to different substrates by different specificity factors such as ClpA or ClpX. Participates in the final steps of RseA-sigma-E degradation, liberating sigma-E to induce the extracytoplasmic-stress response. Degrades antitoxin MazE. | ClpXP protease specificity enhancing factor; Enhances recognition of ssrA-tagged proteins by the ClpX-ClpP protease; the ssrA degradation tag (AANDENYALAA) is added trans- translationally to proteins that are stalled on the ribosome, freeing the ribosome and targeting stalled peptides for degradation. SspB activates the ATPase activity of ClpX. Seems to act in concert with SspA in the regulation of several proteins during exponential and stationary-phase growth. | 0.927 |
clpX | clpP | b0438 | b0437 | ATPase and specificity subunit of ClpX-ClpP ATP-dependent serine protease; ATP-dependent specificity component of the Clp protease. Uses cycles of ATP binding and hydrolysis to unfold proteins and translocate them to the ClpP protease. It directs the protease to specific substrates both with and without the help of adapter proteins such as SspB. Participates in the final steps of RseA-sigma-E degradation, liberating sigma-E to induce the extracytoplasmic-stress response. It may bind to the lambda O substrate protein and present it to the ClpP protease in a form that can be recognized a [...] | Proteolytic subunit of ClpA-ClpP and ClpX-ClpP ATP-dependent serine proteases; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. May play the role of a master protease which is attracted to different substrates by different specificity factors such as ClpA or ClpX. Participates in the final steps of RseA-sigma-E degradation, liberating sigma-E to induce the extracytoplasmic-stress response. Degrades antitoxin MazE. | 0.999 |
clpX | ftsH | b0438 | b3178 | ATPase and specificity subunit of ClpX-ClpP ATP-dependent serine protease; ATP-dependent specificity component of the Clp protease. Uses cycles of ATP binding and hydrolysis to unfold proteins and translocate them to the ClpP protease. It directs the protease to specific substrates both with and without the help of adapter proteins such as SspB. Participates in the final steps of RseA-sigma-E degradation, liberating sigma-E to induce the extracytoplasmic-stress response. It may bind to the lambda O substrate protein and present it to the ClpP protease in a form that can be recognized a [...] | Protease, ATP-dependent zinc-metallo; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins. Degrades a few membrane proteins that have not been assembled into complexes such as SecY, F(0) ATPase subunit a and YccA, and also cytoplasmic proteins sigma-32, LpxC, KdtA and phage lambda cII protein among others. Degrades membrane proteins in a processive manner starting at either the N- or C-terminus; recognition requires a cytoplasmic tail of about 20 residues with no apparent [...] | 0.986 |
clpX | hslU | b0438 | b3931 | ATPase and specificity subunit of ClpX-ClpP ATP-dependent serine protease; ATP-dependent specificity component of the Clp protease. Uses cycles of ATP binding and hydrolysis to unfold proteins and translocate them to the ClpP protease. It directs the protease to specific substrates both with and without the help of adapter proteins such as SspB. Participates in the final steps of RseA-sigma-E degradation, liberating sigma-E to induce the extracytoplasmic-stress response. It may bind to the lambda O substrate protein and present it to the ClpP protease in a form that can be recognized a [...] | Molecular chaperone and ATPase component of HslUV protease; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis. | 0.937 |
clpX | sspB | b0438 | b3228 | ATPase and specificity subunit of ClpX-ClpP ATP-dependent serine protease; ATP-dependent specificity component of the Clp protease. Uses cycles of ATP binding and hydrolysis to unfold proteins and translocate them to the ClpP protease. It directs the protease to specific substrates both with and without the help of adapter proteins such as SspB. Participates in the final steps of RseA-sigma-E degradation, liberating sigma-E to induce the extracytoplasmic-stress response. It may bind to the lambda O substrate protein and present it to the ClpP protease in a form that can be recognized a [...] | ClpXP protease specificity enhancing factor; Enhances recognition of ssrA-tagged proteins by the ClpX-ClpP protease; the ssrA degradation tag (AANDENYALAA) is added trans- translationally to proteins that are stalled on the ribosome, freeing the ribosome and targeting stalled peptides for degradation. SspB activates the ATPase activity of ClpX. Seems to act in concert with SspA in the regulation of several proteins during exponential and stationary-phase growth. | 0.996 |
ftsH | clpP | b3178 | b0437 | Protease, ATP-dependent zinc-metallo; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins. Degrades a few membrane proteins that have not been assembled into complexes such as SecY, F(0) ATPase subunit a and YccA, and also cytoplasmic proteins sigma-32, LpxC, KdtA and phage lambda cII protein among others. Degrades membrane proteins in a processive manner starting at either the N- or C-terminus; recognition requires a cytoplasmic tail of about 20 residues with no apparent [...] | Proteolytic subunit of ClpA-ClpP and ClpX-ClpP ATP-dependent serine proteases; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. May play the role of a master protease which is attracted to different substrates by different specificity factors such as ClpA or ClpX. Participates in the final steps of RseA-sigma-E degradation, liberating sigma-E to induce the extracytoplasmic-stress response. Degrades antitoxin MazE. | 0.948 |
ftsH | clpX | b3178 | b0438 | Protease, ATP-dependent zinc-metallo; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins. Degrades a few membrane proteins that have not been assembled into complexes such as SecY, F(0) ATPase subunit a and YccA, and also cytoplasmic proteins sigma-32, LpxC, KdtA and phage lambda cII protein among others. Degrades membrane proteins in a processive manner starting at either the N- or C-terminus; recognition requires a cytoplasmic tail of about 20 residues with no apparent [...] | ATPase and specificity subunit of ClpX-ClpP ATP-dependent serine protease; ATP-dependent specificity component of the Clp protease. Uses cycles of ATP binding and hydrolysis to unfold proteins and translocate them to the ClpP protease. It directs the protease to specific substrates both with and without the help of adapter proteins such as SspB. Participates in the final steps of RseA-sigma-E degradation, liberating sigma-E to induce the extracytoplasmic-stress response. It may bind to the lambda O substrate protein and present it to the ClpP protease in a form that can be recognized a [...] | 0.986 |
ftsH | hslU | b3178 | b3931 | Protease, ATP-dependent zinc-metallo; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins. Degrades a few membrane proteins that have not been assembled into complexes such as SecY, F(0) ATPase subunit a and YccA, and also cytoplasmic proteins sigma-32, LpxC, KdtA and phage lambda cII protein among others. Degrades membrane proteins in a processive manner starting at either the N- or C-terminus; recognition requires a cytoplasmic tail of about 20 residues with no apparent [...] | Molecular chaperone and ATPase component of HslUV protease; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis. | 0.945 |
ftsH | sspB | b3178 | b3228 | Protease, ATP-dependent zinc-metallo; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins. Degrades a few membrane proteins that have not been assembled into complexes such as SecY, F(0) ATPase subunit a and YccA, and also cytoplasmic proteins sigma-32, LpxC, KdtA and phage lambda cII protein among others. Degrades membrane proteins in a processive manner starting at either the N- or C-terminus; recognition requires a cytoplasmic tail of about 20 residues with no apparent [...] | ClpXP protease specificity enhancing factor; Enhances recognition of ssrA-tagged proteins by the ClpX-ClpP protease; the ssrA degradation tag (AANDENYALAA) is added trans- translationally to proteins that are stalled on the ribosome, freeing the ribosome and targeting stalled peptides for degradation. SspB activates the ATPase activity of ClpX. Seems to act in concert with SspA in the regulation of several proteins during exponential and stationary-phase growth. | 0.494 |
hslU | clpP | b3931 | b0437 | Molecular chaperone and ATPase component of HslUV protease; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis. | Proteolytic subunit of ClpA-ClpP and ClpX-ClpP ATP-dependent serine proteases; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. May play the role of a master protease which is attracted to different substrates by different specificity factors such as ClpA or ClpX. Participates in the final steps of RseA-sigma-E degradation, liberating sigma-E to induce the extracytoplasmic-stress response. Degrades antitoxin MazE. | 0.997 |
hslU | clpX | b3931 | b0438 | Molecular chaperone and ATPase component of HslUV protease; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis. | ATPase and specificity subunit of ClpX-ClpP ATP-dependent serine protease; ATP-dependent specificity component of the Clp protease. Uses cycles of ATP binding and hydrolysis to unfold proteins and translocate them to the ClpP protease. It directs the protease to specific substrates both with and without the help of adapter proteins such as SspB. Participates in the final steps of RseA-sigma-E degradation, liberating sigma-E to induce the extracytoplasmic-stress response. It may bind to the lambda O substrate protein and present it to the ClpP protease in a form that can be recognized a [...] | 0.937 |
hslU | ftsH | b3931 | b3178 | Molecular chaperone and ATPase component of HslUV protease; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis. | Protease, ATP-dependent zinc-metallo; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins. Degrades a few membrane proteins that have not been assembled into complexes such as SecY, F(0) ATPase subunit a and YccA, and also cytoplasmic proteins sigma-32, LpxC, KdtA and phage lambda cII protein among others. Degrades membrane proteins in a processive manner starting at either the N- or C-terminus; recognition requires a cytoplasmic tail of about 20 residues with no apparent [...] | 0.945 |
hslU | sspB | b3931 | b3228 | Molecular chaperone and ATPase component of HslUV protease; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis. | ClpXP protease specificity enhancing factor; Enhances recognition of ssrA-tagged proteins by the ClpX-ClpP protease; the ssrA degradation tag (AANDENYALAA) is added trans- translationally to proteins that are stalled on the ribosome, freeing the ribosome and targeting stalled peptides for degradation. SspB activates the ATPase activity of ClpX. Seems to act in concert with SspA in the regulation of several proteins during exponential and stationary-phase growth. | 0.658 |
sspB | clpP | b3228 | b0437 | ClpXP protease specificity enhancing factor; Enhances recognition of ssrA-tagged proteins by the ClpX-ClpP protease; the ssrA degradation tag (AANDENYALAA) is added trans- translationally to proteins that are stalled on the ribosome, freeing the ribosome and targeting stalled peptides for degradation. SspB activates the ATPase activity of ClpX. Seems to act in concert with SspA in the regulation of several proteins during exponential and stationary-phase growth. | Proteolytic subunit of ClpA-ClpP and ClpX-ClpP ATP-dependent serine proteases; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. May play the role of a master protease which is attracted to different substrates by different specificity factors such as ClpA or ClpX. Participates in the final steps of RseA-sigma-E degradation, liberating sigma-E to induce the extracytoplasmic-stress response. Degrades antitoxin MazE. | 0.927 |
sspB | clpX | b3228 | b0438 | ClpXP protease specificity enhancing factor; Enhances recognition of ssrA-tagged proteins by the ClpX-ClpP protease; the ssrA degradation tag (AANDENYALAA) is added trans- translationally to proteins that are stalled on the ribosome, freeing the ribosome and targeting stalled peptides for degradation. SspB activates the ATPase activity of ClpX. Seems to act in concert with SspA in the regulation of several proteins during exponential and stationary-phase growth. | ATPase and specificity subunit of ClpX-ClpP ATP-dependent serine protease; ATP-dependent specificity component of the Clp protease. Uses cycles of ATP binding and hydrolysis to unfold proteins and translocate them to the ClpP protease. It directs the protease to specific substrates both with and without the help of adapter proteins such as SspB. Participates in the final steps of RseA-sigma-E degradation, liberating sigma-E to induce the extracytoplasmic-stress response. It may bind to the lambda O substrate protein and present it to the ClpP protease in a form that can be recognized a [...] | 0.996 |
sspB | ftsH | b3228 | b3178 | ClpXP protease specificity enhancing factor; Enhances recognition of ssrA-tagged proteins by the ClpX-ClpP protease; the ssrA degradation tag (AANDENYALAA) is added trans- translationally to proteins that are stalled on the ribosome, freeing the ribosome and targeting stalled peptides for degradation. SspB activates the ATPase activity of ClpX. Seems to act in concert with SspA in the regulation of several proteins during exponential and stationary-phase growth. | Protease, ATP-dependent zinc-metallo; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins. Degrades a few membrane proteins that have not been assembled into complexes such as SecY, F(0) ATPase subunit a and YccA, and also cytoplasmic proteins sigma-32, LpxC, KdtA and phage lambda cII protein among others. Degrades membrane proteins in a processive manner starting at either the N- or C-terminus; recognition requires a cytoplasmic tail of about 20 residues with no apparent [...] | 0.494 |
sspB | hslU | b3228 | b3931 | ClpXP protease specificity enhancing factor; Enhances recognition of ssrA-tagged proteins by the ClpX-ClpP protease; the ssrA degradation tag (AANDENYALAA) is added trans- translationally to proteins that are stalled on the ribosome, freeing the ribosome and targeting stalled peptides for degradation. SspB activates the ATPase activity of ClpX. Seems to act in concert with SspA in the regulation of several proteins during exponential and stationary-phase growth. | Molecular chaperone and ATPase component of HslUV protease; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis. | 0.658 |