STRINGSTRING
ruvA ruvA umuD umuD dinI dinI uvrB uvrB dinB dinB uvrA uvrA lexA lexA uvrD uvrD recG recG recX recX umuC umuC
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ruvAComponent of RuvABC resolvasome, regulatory subunit; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing. RuvA stimulates, in the presence of DNA, the weak ATPase activity of RuvB. Binds both single- and double-stranded DNA (dsDNA). Binds preferentially to supercoiled rather than to relaxed dsDNA. (203 aa)
umuDTranslesion error-prone DNA polymerase V subunit; Involved in UV protection and mutation. Poorly processive, error-prone DNA polymerase involved in translesion repair. Essential for induced (or SOS) mutagenesis. Able to replicate DNA across DNA lesions (thymine photodimers and abasic sites, called translesion synthesis) in the presence of activated RecA; efficiency is maximal in the presence of the beta sliding-clamp and clamp-loading complex of DNA polymerase III plus single-stranded binding protein (SSB). RecA and to a lesser extent the beta clamp-complex may target Pol V to replicat [...] (139 aa)
dinIDNA damage-inducible protein I; Involved in SOS regulation. Inhibits RecA by preventing RecA to bind ssDNA. Can displace ssDNA from RecA. (81 aa)
uvrBExision nuclease of nucleotide excision repair, DNA damage recognition component; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesi [...] (673 aa)
dinBDNA polymerase IV; Poorly processive, error-prone DNA polymerase involved in translesion repair and untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by Pol IV. Exhibits no 3'-5' exonuclease (proofreading) activity. Overexpression of Pol IV results in increased frameshift mutagenesis. It is required for stationary-phase adaptive mutation, which provides the bacterium with flexibility in dealing with environmental stress, enhancing long- term survival and evol [...] (351 aa)
uvrAATPase and DNA damage recognition protein of nucleotide excision repair excinuclease UvrABC; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate. (940 aa)
lexATranscriptional repressor of SOS regulon; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. Binds to the 16 bp palindromic sequence 5'-CTGTATATATATACAG-3'. In the presence of single- stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair. Implicated in hydroxy radical-mediated cell death induced by hydroxyurea treatment .The SOS response controls an apoptotic-like death (ALD) induced (in the absence [...] (202 aa)
uvrDDNA-dependent ATPase I and helicase II; A helicase with DNA-dependent ATPase activity. Unwinds DNA duplexes with 3' to 5' polarity with respect to the bound strand. Initiates unwinding more efficiently from a nicked substrate than ds duplex DNA. Involved in the post-incision events of nucleotide excision repair and methyl-directed mismatch repair, and probably also in repair of alkylated DNA (Probable). (720 aa)
recGATP-dependent DNA helicase; Plays a critical role in recombination and DNA repair. Helps process Holliday junction intermediates to mature products by catalyzing branch migration. Has a DNA unwinding activity characteristic of a DNA helicase with 3'- to 5'- polarity. Unwinds branched duplex DNA (Y-DNA). Has a role in constitutive stable DNA replication (cSDR) and R-loop formation. Is genetically synergistic to RadA and RuvABC. Belongs to the helicase family. RecG subfamily. (693 aa)
recXRegulatory protein for RecA; Modulates RecA activity through direct physical interaction. Can inhibit both RecA recombinase and coprotease activities. May have a regulatory role during the SOS response. Inhibits DNA strand exchange in vitro; Belongs to the RecX family. (166 aa)
umuCTranslesion error-prone DNA polymerase V subunit; Involved in UV protection and mutation. Poorly processive, error-prone DNA polymerase involved in translesion repair. Essential for induced (or SOS) mutagenesis. Able to replicate DNA across DNA lesions (thymine photodimers and abasic sites, translesion synthesis) in the presence of activated RecA; efficiency is maximal in the presence of the beta sliding-clamp and clamp-loading complex of DNA polymerase III plus single-stranded binding protein (SSB). RecA and to a lesser extent the beta clamp- complex may target Pol V to replication co [...] (422 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (16%) [HD]