node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
cadB | cadC | b4132 | b4133 | Putative lysine/cadaverine transporter; Probable cadaverine/lysine antiporter or part of it. | cadBA operon transcriptional activator; Required for Pcad induction, a promoter upstream of cadBA that is responsible for the pH-regulated expression of CadA and CadB. Probably acts as an activating transcription factor. | 0.979 |
cadB | gadA | b4132 | b3517 | Putative lysine/cadaverine transporter; Probable cadaverine/lysine antiporter or part of it. | Glutamate decarboxylase A, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria. | 0.738 |
cadB | gadB | b4132 | b1493 | Putative lysine/cadaverine transporter; Probable cadaverine/lysine antiporter or part of it. | Glutamate decarboxylase B, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria; Belongs to the group II decarboxylase family. | 0.656 |
cadB | ldcC | b4132 | b0186 | Putative lysine/cadaverine transporter; Probable cadaverine/lysine antiporter or part of it. | Lysine decarboxylase 2, constitutive; Plays a role in lysine utilization by acting as a lysine decarboxylase. | 0.897 |
cadC | cadB | b4133 | b4132 | cadBA operon transcriptional activator; Required for Pcad induction, a promoter upstream of cadBA that is responsible for the pH-regulated expression of CadA and CadB. Probably acts as an activating transcription factor. | Putative lysine/cadaverine transporter; Probable cadaverine/lysine antiporter or part of it. | 0.979 |
cadC | gadA | b4133 | b3517 | cadBA operon transcriptional activator; Required for Pcad induction, a promoter upstream of cadBA that is responsible for the pH-regulated expression of CadA and CadB. Probably acts as an activating transcription factor. | Glutamate decarboxylase A, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria. | 0.507 |
cadC | gadC | b4133 | b1492 | cadBA operon transcriptional activator; Required for Pcad induction, a promoter upstream of cadBA that is responsible for the pH-regulated expression of CadA and CadB. Probably acts as an activating transcription factor. | Glutamate:gamma-aminobutyric acid antiporter; Involved in glutamate-dependent acid resistance. Imports glutamate inside the cell while simultaneously exporting to the periplasm the GABA produced by GadA and GadB. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria; Belongs to the amino acid-polyamine-organocation (APC) superfamily. Glutamate:GABA [...] | 0.504 |
cadC | gadE | b4133 | b3512 | cadBA operon transcriptional activator; Required for Pcad induction, a promoter upstream of cadBA that is responsible for the pH-regulated expression of CadA and CadB. Probably acts as an activating transcription factor. | Gad regulon transcriptional activator; Regulates the expression of several genes involved in acid resistance. Required for the expression of gadA and gadBC, among others, regardless of media or growth conditions. Binds directly to the 20 bp GAD box found in the control regions of both loci. | 0.479 |
cadC | ldcC | b4133 | b0186 | cadBA operon transcriptional activator; Required for Pcad induction, a promoter upstream of cadBA that is responsible for the pH-regulated expression of CadA and CadB. Probably acts as an activating transcription factor. | Lysine decarboxylase 2, constitutive; Plays a role in lysine utilization by acting as a lysine decarboxylase. | 0.522 |
gadA | cadB | b3517 | b4132 | Glutamate decarboxylase A, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria. | Putative lysine/cadaverine transporter; Probable cadaverine/lysine antiporter or part of it. | 0.738 |
gadA | cadC | b3517 | b4133 | Glutamate decarboxylase A, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria. | cadBA operon transcriptional activator; Required for Pcad induction, a promoter upstream of cadBA that is responsible for the pH-regulated expression of CadA and CadB. Probably acts as an activating transcription factor. | 0.507 |
gadA | gadB | b3517 | b1493 | Glutamate decarboxylase A, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria. | Glutamate decarboxylase B, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria; Belongs to the group II decarboxylase family. | 0.999 |
gadA | gadC | b3517 | b1492 | Glutamate decarboxylase A, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria. | Glutamate:gamma-aminobutyric acid antiporter; Involved in glutamate-dependent acid resistance. Imports glutamate inside the cell while simultaneously exporting to the periplasm the GABA produced by GadA and GadB. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria; Belongs to the amino acid-polyamine-organocation (APC) superfamily. Glutamate:GABA [...] | 0.999 |
gadA | gadE | b3517 | b3512 | Glutamate decarboxylase A, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria. | Gad regulon transcriptional activator; Regulates the expression of several genes involved in acid resistance. Required for the expression of gadA and gadBC, among others, regardless of media or growth conditions. Binds directly to the 20 bp GAD box found in the control regions of both loci. | 0.995 |
gadB | cadB | b1493 | b4132 | Glutamate decarboxylase B, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria; Belongs to the group II decarboxylase family. | Putative lysine/cadaverine transporter; Probable cadaverine/lysine antiporter or part of it. | 0.656 |
gadB | gadA | b1493 | b3517 | Glutamate decarboxylase B, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria; Belongs to the group II decarboxylase family. | Glutamate decarboxylase A, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria. | 0.999 |
gadB | gadC | b1493 | b1492 | Glutamate decarboxylase B, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria; Belongs to the group II decarboxylase family. | Glutamate:gamma-aminobutyric acid antiporter; Involved in glutamate-dependent acid resistance. Imports glutamate inside the cell while simultaneously exporting to the periplasm the GABA produced by GadA and GadB. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria; Belongs to the amino acid-polyamine-organocation (APC) superfamily. Glutamate:GABA [...] | 0.999 |
gadB | gadE | b1493 | b3512 | Glutamate decarboxylase B, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria; Belongs to the group II decarboxylase family. | Gad regulon transcriptional activator; Regulates the expression of several genes involved in acid resistance. Required for the expression of gadA and gadBC, among others, regardless of media or growth conditions. Binds directly to the 20 bp GAD box found in the control regions of both loci. | 0.994 |
gadC | cadC | b1492 | b4133 | Glutamate:gamma-aminobutyric acid antiporter; Involved in glutamate-dependent acid resistance. Imports glutamate inside the cell while simultaneously exporting to the periplasm the GABA produced by GadA and GadB. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria; Belongs to the amino acid-polyamine-organocation (APC) superfamily. Glutamate:GABA [...] | cadBA operon transcriptional activator; Required for Pcad induction, a promoter upstream of cadBA that is responsible for the pH-regulated expression of CadA and CadB. Probably acts as an activating transcription factor. | 0.504 |
gadC | gadA | b1492 | b3517 | Glutamate:gamma-aminobutyric acid antiporter; Involved in glutamate-dependent acid resistance. Imports glutamate inside the cell while simultaneously exporting to the periplasm the GABA produced by GadA and GadB. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria; Belongs to the amino acid-polyamine-organocation (APC) superfamily. Glutamate:GABA [...] | Glutamate decarboxylase A, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria. | 0.999 |