Your Input: | |||||
hdeA | Stress response protein acid-resistance protein; Required for optimal acid stress protection. Exhibits a chaperone-like activity only at pH below 3 by suppressing non- specifically the aggregation of denaturated periplasmic proteins. Important for survival of enteric bacteria in the acidic environment of the host stomach. Also promotes the solubilization at neutral pH of proteins that had aggregated in their presence at acidic pHs. May cooperate with other periplasmic chaperones such as DegP and SurA. (110 aa) | ||||
gadA | Glutamate decarboxylase A, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria. (466 aa) | ||||
aceB | Malate synthase A; Protein involved in glyoxylate cycle. (533 aa) | ||||
aceA | Isocitrate lyase; Involved in the metabolic adaptation in response to environmental changes. Catalyzes the reversible formation of succinate and glyoxylate from isocitrate, a key step of the glyoxylate cycle, which operates as an anaplerotic route for replenishing the tricarboxylic acid cycle during growth on fatty acid substrates. (434 aa) | ||||
otsB | Trehalose-6-phosphate phosphatase, biosynthetic; Removes the phosphate from trehalose 6-phosphate (Tre6P) to produce free trehalose. Also catalyzes the dephosphorylation of glucose-6-phosphate (Glu6P) and 2-deoxyglucose-6-phosphate (2dGlu6P). (266 aa) | ||||
fbaB | Fructose-bisphosphate aldolase class I; Protein involved in glycolysis; Belongs to the DeoC/FbaB aldolase family. FbaB subfamily. (350 aa) | ||||
maeB | Malic enzyme: putative oxidoreductase/phosphotransacetylase; Putative multimodular enzyme; In the N-terminal section; belongs to the malic enzymes family. (759 aa) | ||||
gabP | Gamma-aminobutyrate transporter; Transporter for GABA; Belongs to the amino acid-polyamine-organocation (APC) superfamily. Amino acid transporter (AAT) (TC 2.A.3.1) family. (466 aa) | ||||
rpoS | RNA polymerase, sigma S (sigma 38) factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the master transcriptional regulator of the stationary phase and the general stress response. Controls, positively or negatively, the expression of several hundred genes, which are mainly involved in metabolism, transport, regulation and stress management. (330 aa) | ||||
hdeB | Acid-resistance protein; Required for optimal acid stress protection, which is important for survival of enteric bacteria in the acidic environment of the host stomach. Exhibits a chaperone-like activity at acidic pH by preventing the aggregation of many different periplasmic proteins. (108 aa) | ||||
hdeD | Acid-resistance membrane protein. (190 aa) | ||||
leuL | Leu operon leader peptide; Involved in control of the biosynthesis of leucine. (28 aa) | ||||
dksA | Transcriptional regulator of rRNA transcription; Transcription factor that acts by binding directly to the RNA polymerase (RNAP). Required for negative regulation of rRNA expression and positive regulation of several amino acid biosynthesis promoters. Also required for regulation of fis expression. Binding to RNAP disrupts interaction of RNAP with DNA, inhibits formation of initiation complexes, and amplifies effects of ppGpp and the initiating NTP on rRNA transcription. Inhibits transcript elongation, exonucleolytic RNA cleavage and pyrophosphorolysis, and increases intrinsic terminat [...] (151 aa) | ||||
yahO | Periplasmic protein, function unknown, YhcN family. (91 aa) | ||||
poxB | Pyruvate dehydrogenase, thiamine triphosphate-binding, FAD-binding; Pyruvate oxidase; Protein involved in carbohydrate catabolic process and pyruvate catabolic process; Belongs to the TPP enzyme family. (572 aa) | ||||
wrbA | NAD(P)H:quinone oxidoreductase; It seems to function in response to environmental stress when various electron transfer chains are affected or when the environment is highly oxidizing. It reduces quinones to the hydroquinone state to prevent interaction of the semiquinone with O2 and production of superoxide. It prefers NADH over NADPH. (198 aa) | ||||
dadA | D-amino acid dehydrogenase; Catalyzes the oxidative deamination of D-amino acids. Has broad substrate specificity; is mostly active on D-alanine, and to a lesser extent, on several other D-amino acids such as D-methionine, D- serine and D-proline, but not on L-alanine. Participates in the utilization of L-alanine and D-alanine as the sole source of carbon, nitrogen and energy for growth. Is also able to oxidize D-amino acid analogs such as 3,4-dehydro-D-proline, D-2-aminobutyrate, D-norvaline, D-norleucine, cis-4-hydroxy-D-proline, and DL-ethionine. (432 aa) | ||||
treA | Periplasmic trehalase; Provides the cells with the ability to utilize trehalose at high osmolarity by splitting it into glucose molecules that can subsequently be taken up by the phosphotransferase-mediated uptake system. (565 aa) | ||||
gadC | Glutamate:gamma-aminobutyric acid antiporter; Involved in glutamate-dependent acid resistance. Imports glutamate inside the cell while simultaneously exporting to the periplasm the GABA produced by GadA and GadB. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria; Belongs to the amino acid-polyamine-organocation (APC) superfamily. Glutamate:GABA [...] (511 aa) | ||||
gadB | Glutamate decarboxylase B, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria; Belongs to the group II decarboxylase family. (466 aa) | ||||
sodC | Superoxide dismutase, Cu, Zn, periplasmic; Destroys radicals which are normally produced within the cells and which are toxic to biological systems. (173 aa) | ||||
otsA | Trehalose-6-phosphate synthase; Catalyzes the transfer of glucose from UDP-alpha-D-glucose (UDP-Glc) to D-glucose 6-phosphate (Glc-6-P) to form trehalose-6- phosphate. Acts with retention of the anomeric configuration of the UDP-sugar donor. Essential for viability of the cells at low temperatures and at elevated osmotic strength. Belongs to the glycosyltransferase 20 family. (474 aa) |