node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
araC | gadA | b0064 | b3517 | Ara regulon transcriptional activator; Transcription factor that regulates the expression of several genes involved in the transport and metabolism of L-arabinose. Functions both as a positive and a negative regulator. In the presence of arabinose, activates the expression of the araBAD, araE, araFGH and araJ promoters. In the absence of arabinose, negatively regulates the araBAD operon. Represses its own transcription. Acts by binding directly to DNA. | Glutamate decarboxylase A, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria. | 0.503 |
araC | gadW | b0064 | b3515 | Ara regulon transcriptional activator; Transcription factor that regulates the expression of several genes involved in the transport and metabolism of L-arabinose. Functions both as a positive and a negative regulator. In the presence of arabinose, activates the expression of the araBAD, araE, araFGH and araJ promoters. In the absence of arabinose, negatively regulates the araBAD operon. Represses its own transcription. Acts by binding directly to DNA. | Transcriptional activator of gadA and gadBC; Depending on the conditions (growth phase and medium), acts as a positive or negative regulator of gadA and gadBC. Repression occurs directly or via the repression of the expression of gadX. Activation occurs directly by the binding of GadW to the gadA and gadBC promoters. | 0.624 |
araC | gadX | b0064 | b3516 | Ara regulon transcriptional activator; Transcription factor that regulates the expression of several genes involved in the transport and metabolism of L-arabinose. Functions both as a positive and a negative regulator. In the presence of arabinose, activates the expression of the araBAD, araE, araFGH and araJ promoters. In the absence of arabinose, negatively regulates the araBAD operon. Represses its own transcription. Acts by binding directly to DNA. | Acid resistance regulon transcriptional activator; Positively regulates the expression of about fifteen genes involved in acid resistance such as gadA, gadB and gadC. Depending on the conditions (growth phase and medium), can repress gadW. | 0.763 |
araC | lacZ | b0064 | b0344 | Ara regulon transcriptional activator; Transcription factor that regulates the expression of several genes involved in the transport and metabolism of L-arabinose. Functions both as a positive and a negative regulator. In the presence of arabinose, activates the expression of the araBAD, araE, araFGH and araJ promoters. In the absence of arabinose, negatively regulates the araBAD operon. Represses its own transcription. Acts by binding directly to DNA. | beta-D-galactosidase; Protein involved in carbohydrate catabolic process; Belongs to the glycosyl hydrolase 2 family. | 0.891 |
araC | malE | b0064 | b4034 | Ara regulon transcriptional activator; Transcription factor that regulates the expression of several genes involved in the transport and metabolism of L-arabinose. Functions both as a positive and a negative regulator. In the presence of arabinose, activates the expression of the araBAD, araE, araFGH and araJ promoters. In the absence of arabinose, negatively regulates the araBAD operon. Represses its own transcription. Acts by binding directly to DNA. | Maltose transporter subunit; Part of the ABC transporter complex MalEFGK involved in maltose/maltodextrin import. Binds maltose and higher maltodextrins such as maltotriose. Belongs to the bacterial solute-binding protein 1 family. | 0.700 |
araC | rpoS | b0064 | b2741 | Ara regulon transcriptional activator; Transcription factor that regulates the expression of several genes involved in the transport and metabolism of L-arabinose. Functions both as a positive and a negative regulator. In the presence of arabinose, activates the expression of the araBAD, araE, araFGH and araJ promoters. In the absence of arabinose, negatively regulates the araBAD operon. Represses its own transcription. Acts by binding directly to DNA. | RNA polymerase, sigma S (sigma 38) factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the master transcriptional regulator of the stationary phase and the general stress response. Controls, positively or negatively, the expression of several hundred genes, which are mainly involved in metabolism, transport, regulation and stress management. | 0.541 |
btuB | btuR | b3966 | b1270 | Vitamin B12/cobalamin outer membrane transporter; Involved in the active translocation of vitamin B12 (cyanocobalamin) across the outer membrane to the periplasmic space. It derives its energy for transport by interacting with the trans- periplasmic membrane protein TonB. Is also a receptor for bacteriophages BF23 and C1, and for A and E colicins. | cob(I)yrinic acid a,c-diamide adenosyltransferase; Required for both de novo synthesis of the corrin ring for the assimilation of exogenous corrinoids. Participates in the adenosylation of a variety of incomplete and complete corrinoids (By similarity). | 0.653 |
btuB | ompF | b3966 | b0929 | Vitamin B12/cobalamin outer membrane transporter; Involved in the active translocation of vitamin B12 (cyanocobalamin) across the outer membrane to the periplasmic space. It derives its energy for transport by interacting with the trans- periplasmic membrane protein TonB. Is also a receptor for bacteriophages BF23 and C1, and for A and E colicins. | Outer membrane porin 1a (Ia;b;F); Forms pores that allow passive diffusion of small molecules across the outer membrane. (Microbial infection) A mixed OmpC-OmpF heterotrimer is the outer membrane receptor for toxin CdiA-EC536; polymorphisms in extracellular loops 4 and 5 of OmpC confer susceptibility to CdiA- EC536-mediated toxicity; Belongs to the Gram-negative porin family. | 0.997 |
btuB | pal | b3966 | b0741 | Vitamin B12/cobalamin outer membrane transporter; Involved in the active translocation of vitamin B12 (cyanocobalamin) across the outer membrane to the periplasmic space. It derives its energy for transport by interacting with the trans- periplasmic membrane protein TonB. Is also a receptor for bacteriophages BF23 and C1, and for A and E colicins. | Peptidoglycan-associated outer membrane lipoprotein; Part of the Tol-Pal system, which plays a role in outer membrane invagination during cell division and is important for maintaining outer membrane integrity. The Tol-Pal system is also required for polar localization of chemoreceptors clusters. | 0.497 |
btuB | tolB | b3966 | b0740 | Vitamin B12/cobalamin outer membrane transporter; Involved in the active translocation of vitamin B12 (cyanocobalamin) across the outer membrane to the periplasmic space. It derives its energy for transport by interacting with the trans- periplasmic membrane protein TonB. Is also a receptor for bacteriophages BF23 and C1, and for A and E colicins. | Periplasmic protein; Part of the Tol-Pal system, which plays a role in outer membrane invagination during cell division and is important for maintaining outer membrane integrity. TolB occupies a key intermediary position in the Tol-Pal system because it communicates directly with both membrane-embedded components, Pal in the outer membrane and TolA in the inner membrane. Is also involved in the uptake of some colicins A. The Tol-Pal system is also required for polar localization of chemoreceptors clusters. | 0.960 |
btuB | tolQ | b3966 | b0737 | Vitamin B12/cobalamin outer membrane transporter; Involved in the active translocation of vitamin B12 (cyanocobalamin) across the outer membrane to the periplasmic space. It derives its energy for transport by interacting with the trans- periplasmic membrane protein TonB. Is also a receptor for bacteriophages BF23 and C1, and for A and E colicins. | Membrane spanning protein in TolA-TolQ-TolR complex; Part of the Tol-Pal system, which plays a role in outer membrane invagination during cell division and is important for maintaining outer membrane integrity. Required, with TolR, for the proton motive force-dependent activation of TolA and for TolA-Pal interaction. Is also involved in the uptake of group A colicins (colicins A, E1, E2, E3, and K) and in the uptake of filamentous phage DNA. The Tol-Pal system is also required for polar localization of chemoreceptors clusters. Belongs to the ExbB/TolQ family. | 0.720 |
btuB | tolR | b3966 | b0738 | Vitamin B12/cobalamin outer membrane transporter; Involved in the active translocation of vitamin B12 (cyanocobalamin) across the outer membrane to the periplasmic space. It derives its energy for transport by interacting with the trans- periplasmic membrane protein TonB. Is also a receptor for bacteriophages BF23 and C1, and for A and E colicins. | Membrane spanning protein in TolA-TolQ-TolR complex; Part of the Tol-Pal system, which plays a role in outer membrane invagination during cell division and is important for maintaining outer membrane integrity. Required, with TolQ, for the proton motive force-dependent activation of TolA and for TolA-Pal interaction .The Tol-Pal system is also required for polar localization of chemoreceptors clusters (Probable). There are about 900 TolR molecules per cell. Modeling suggests that non-covalent binding of OmpA (from the outer membrane) and TolR (from the inner membrane) to peptidoglycan [...] | 0.721 |
btuR | btuB | b1270 | b3966 | cob(I)yrinic acid a,c-diamide adenosyltransferase; Required for both de novo synthesis of the corrin ring for the assimilation of exogenous corrinoids. Participates in the adenosylation of a variety of incomplete and complete corrinoids (By similarity). | Vitamin B12/cobalamin outer membrane transporter; Involved in the active translocation of vitamin B12 (cyanocobalamin) across the outer membrane to the periplasmic space. It derives its energy for transport by interacting with the trans- periplasmic membrane protein TonB. Is also a receptor for bacteriophages BF23 and C1, and for A and E colicins. | 0.653 |
gadA | araC | b3517 | b0064 | Glutamate decarboxylase A, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria. | Ara regulon transcriptional activator; Transcription factor that regulates the expression of several genes involved in the transport and metabolism of L-arabinose. Functions both as a positive and a negative regulator. In the presence of arabinose, activates the expression of the araBAD, araE, araFGH and araJ promoters. In the absence of arabinose, negatively regulates the araBAD operon. Represses its own transcription. Acts by binding directly to DNA. | 0.503 |
gadA | gadB | b3517 | b1493 | Glutamate decarboxylase A, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria. | Glutamate decarboxylase B, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria; Belongs to the group II decarboxylase family. | 0.999 |
gadA | gadC | b3517 | b1492 | Glutamate decarboxylase A, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria. | Glutamate:gamma-aminobutyric acid antiporter; Involved in glutamate-dependent acid resistance. Imports glutamate inside the cell while simultaneously exporting to the periplasm the GABA produced by GadA and GadB. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria; Belongs to the amino acid-polyamine-organocation (APC) superfamily. Glutamate:GABA [...] | 0.999 |
gadA | gadW | b3517 | b3515 | Glutamate decarboxylase A, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria. | Transcriptional activator of gadA and gadBC; Depending on the conditions (growth phase and medium), acts as a positive or negative regulator of gadA and gadBC. Repression occurs directly or via the repression of the expression of gadX. Activation occurs directly by the binding of GadW to the gadA and gadBC promoters. | 0.940 |
gadA | gadX | b3517 | b3516 | Glutamate decarboxylase A, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria. | Acid resistance regulon transcriptional activator; Positively regulates the expression of about fifteen genes involved in acid resistance such as gadA, gadB and gadC. Depending on the conditions (growth phase and medium), can repress gadW. | 0.960 |
gadA | rpoS | b3517 | b2741 | Glutamate decarboxylase A, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria. | RNA polymerase, sigma S (sigma 38) factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the master transcriptional regulator of the stationary phase and the general stress response. Controls, positively or negatively, the expression of several hundred genes, which are mainly involved in metabolism, transport, regulation and stress management. | 0.814 |
gadB | gadA | b1493 | b3517 | Glutamate decarboxylase B, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria; Belongs to the group II decarboxylase family. | Glutamate decarboxylase A, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria. | 0.999 |