node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
cbpA | cbpM | b1000 | b0999 | DnaK co-chaperone; DNA-binding protein that preferentially recognizes a curved DNA sequence. It is probably a functional analog of DnaJ; displays overlapping activities with DnaJ, but functions under different conditions, probably acting as a molecular chaperone in an adaptive response to environmental stresses other than heat shock. Lacks autonomous chaperone activity; binds native substrates and targets them for recognition by DnaK. Its activity is inhibited by the binding of CbpM. | Modulator of CbpA co-chaperone; Interacts with CbpA and inhibits both the DnaJ-like co- chaperone activity and the DNA binding activity of CbpA. Together with CbpA, modulates the activity of the DnaK chaperone system. Does not inhibit the co-chaperone activity of DnaJ; Belongs to the CbpM family. | 0.999 |
cbpA | clpB | b1000 | b2592 | DnaK co-chaperone; DNA-binding protein that preferentially recognizes a curved DNA sequence. It is probably a functional analog of DnaJ; displays overlapping activities with DnaJ, but functions under different conditions, probably acting as a molecular chaperone in an adaptive response to environmental stresses other than heat shock. Lacks autonomous chaperone activity; binds native substrates and targets them for recognition by DnaK. Its activity is inhibited by the binding of CbpM. | Protein disaggregation chaperone; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK. | 0.777 |
cbpA | dnaK | b1000 | b0014 | DnaK co-chaperone; DNA-binding protein that preferentially recognizes a curved DNA sequence. It is probably a functional analog of DnaJ; displays overlapping activities with DnaJ, but functions under different conditions, probably acting as a molecular chaperone in an adaptive response to environmental stresses other than heat shock. Lacks autonomous chaperone activity; binds native substrates and targets them for recognition by DnaK. Its activity is inhibited by the binding of CbpM. | Chaperone Hsp70, with co-chaperone DnaJ; Plays an essential role in the initiation of phage lambda DNA replication, where it acts in an ATP-dependent fashion with the DnaJ protein to release lambda O and P proteins from the preprimosomal complex. DnaK is also involved in chromosomal DNA replication, possibly through an analogous interaction with the DnaA protein. Also participates actively in the response to hyperosmotic shock. | 0.996 |
cbpA | ftsH | b1000 | b3178 | DnaK co-chaperone; DNA-binding protein that preferentially recognizes a curved DNA sequence. It is probably a functional analog of DnaJ; displays overlapping activities with DnaJ, but functions under different conditions, probably acting as a molecular chaperone in an adaptive response to environmental stresses other than heat shock. Lacks autonomous chaperone activity; binds native substrates and targets them for recognition by DnaK. Its activity is inhibited by the binding of CbpM. | Protease, ATP-dependent zinc-metallo; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins. Degrades a few membrane proteins that have not been assembled into complexes such as SecY, F(0) ATPase subunit a and YccA, and also cytoplasmic proteins sigma-32, LpxC, KdtA and phage lambda cII protein among others. Degrades membrane proteins in a processive manner starting at either the N- or C-terminus; recognition requires a cytoplasmic tail of about 20 residues with no apparent [...] | 0.434 |
cbpA | groL | b1000 | b4143 | DnaK co-chaperone; DNA-binding protein that preferentially recognizes a curved DNA sequence. It is probably a functional analog of DnaJ; displays overlapping activities with DnaJ, but functions under different conditions, probably acting as a molecular chaperone in an adaptive response to environmental stresses other than heat shock. Lacks autonomous chaperone activity; binds native substrates and targets them for recognition by DnaK. Its activity is inhibited by the binding of CbpM. | Cpn60 chaperonin GroEL, large subunit of GroESL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. | 0.815 |
cbpA | grpE | b1000 | b2614 | DnaK co-chaperone; DNA-binding protein that preferentially recognizes a curved DNA sequence. It is probably a functional analog of DnaJ; displays overlapping activities with DnaJ, but functions under different conditions, probably acting as a molecular chaperone in an adaptive response to environmental stresses other than heat shock. Lacks autonomous chaperone activity; binds native substrates and targets them for recognition by DnaK. Its activity is inhibited by the binding of CbpM. | Heat shock protein; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-depen [...] | 0.985 |
cbpA | ibpA | b1000 | b3687 | DnaK co-chaperone; DNA-binding protein that preferentially recognizes a curved DNA sequence. It is probably a functional analog of DnaJ; displays overlapping activities with DnaJ, but functions under different conditions, probably acting as a molecular chaperone in an adaptive response to environmental stresses other than heat shock. Lacks autonomous chaperone activity; binds native substrates and targets them for recognition by DnaK. Its activity is inhibited by the binding of CbpM. | Heat shock chaperone; Associates with aggregated proteins, together with IbpB, to stabilize and protect them from irreversible denaturation and extensive proteolysis during heat shock and oxidative stress. Aggregated proteins bound to the IbpAB complex are more efficiently refolded and reactivated by the ATP-dependent chaperone systems ClpB and DnaK/DnaJ/GrpE. Its activity is ATP-independent. | 0.453 |
cbpA | rpoS | b1000 | b2741 | DnaK co-chaperone; DNA-binding protein that preferentially recognizes a curved DNA sequence. It is probably a functional analog of DnaJ; displays overlapping activities with DnaJ, but functions under different conditions, probably acting as a molecular chaperone in an adaptive response to environmental stresses other than heat shock. Lacks autonomous chaperone activity; binds native substrates and targets them for recognition by DnaK. Its activity is inhibited by the binding of CbpM. | RNA polymerase, sigma S (sigma 38) factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the master transcriptional regulator of the stationary phase and the general stress response. Controls, positively or negatively, the expression of several hundred genes, which are mainly involved in metabolism, transport, regulation and stress management. | 0.405 |
cbpM | cbpA | b0999 | b1000 | Modulator of CbpA co-chaperone; Interacts with CbpA and inhibits both the DnaJ-like co- chaperone activity and the DNA binding activity of CbpA. Together with CbpA, modulates the activity of the DnaK chaperone system. Does not inhibit the co-chaperone activity of DnaJ; Belongs to the CbpM family. | DnaK co-chaperone; DNA-binding protein that preferentially recognizes a curved DNA sequence. It is probably a functional analog of DnaJ; displays overlapping activities with DnaJ, but functions under different conditions, probably acting as a molecular chaperone in an adaptive response to environmental stresses other than heat shock. Lacks autonomous chaperone activity; binds native substrates and targets them for recognition by DnaK. Its activity is inhibited by the binding of CbpM. | 0.999 |
cbpM | dnaJ | b0999 | b0015 | Modulator of CbpA co-chaperone; Interacts with CbpA and inhibits both the DnaJ-like co- chaperone activity and the DNA binding activity of CbpA. Together with CbpA, modulates the activity of the DnaK chaperone system. Does not inhibit the co-chaperone activity of DnaJ; Belongs to the CbpM family. | Chaperone Hsp40, DnaK co-chaperone; Interacts with DnaK and GrpE to disassemble a protein complex at the origins of replication of phage lambda and several plasmids. Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK t [...] | 0.948 |
cbpM | dnaK | b0999 | b0014 | Modulator of CbpA co-chaperone; Interacts with CbpA and inhibits both the DnaJ-like co- chaperone activity and the DNA binding activity of CbpA. Together with CbpA, modulates the activity of the DnaK chaperone system. Does not inhibit the co-chaperone activity of DnaJ; Belongs to the CbpM family. | Chaperone Hsp70, with co-chaperone DnaJ; Plays an essential role in the initiation of phage lambda DNA replication, where it acts in an ATP-dependent fashion with the DnaJ protein to release lambda O and P proteins from the preprimosomal complex. DnaK is also involved in chromosomal DNA replication, possibly through an analogous interaction with the DnaA protein. Also participates actively in the response to hyperosmotic shock. | 0.667 |
cbpM | grpE | b0999 | b2614 | Modulator of CbpA co-chaperone; Interacts with CbpA and inhibits both the DnaJ-like co- chaperone activity and the DNA binding activity of CbpA. Together with CbpA, modulates the activity of the DnaK chaperone system. Does not inhibit the co-chaperone activity of DnaJ; Belongs to the CbpM family. | Heat shock protein; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-depen [...] | 0.497 |
clpB | cbpA | b2592 | b1000 | Protein disaggregation chaperone; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK. | DnaK co-chaperone; DNA-binding protein that preferentially recognizes a curved DNA sequence. It is probably a functional analog of DnaJ; displays overlapping activities with DnaJ, but functions under different conditions, probably acting as a molecular chaperone in an adaptive response to environmental stresses other than heat shock. Lacks autonomous chaperone activity; binds native substrates and targets them for recognition by DnaK. Its activity is inhibited by the binding of CbpM. | 0.777 |
clpB | dnaJ | b2592 | b0015 | Protein disaggregation chaperone; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK. | Chaperone Hsp40, DnaK co-chaperone; Interacts with DnaK and GrpE to disassemble a protein complex at the origins of replication of phage lambda and several plasmids. Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK t [...] | 0.996 |
clpB | dnaK | b2592 | b0014 | Protein disaggregation chaperone; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK. | Chaperone Hsp70, with co-chaperone DnaJ; Plays an essential role in the initiation of phage lambda DNA replication, where it acts in an ATP-dependent fashion with the DnaJ protein to release lambda O and P proteins from the preprimosomal complex. DnaK is also involved in chromosomal DNA replication, possibly through an analogous interaction with the DnaA protein. Also participates actively in the response to hyperosmotic shock. | 0.999 |
clpB | ftsH | b2592 | b3178 | Protein disaggregation chaperone; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK. | Protease, ATP-dependent zinc-metallo; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins. Degrades a few membrane proteins that have not been assembled into complexes such as SecY, F(0) ATPase subunit a and YccA, and also cytoplasmic proteins sigma-32, LpxC, KdtA and phage lambda cII protein among others. Degrades membrane proteins in a processive manner starting at either the N- or C-terminus; recognition requires a cytoplasmic tail of about 20 residues with no apparent [...] | 0.868 |
clpB | groL | b2592 | b4143 | Protein disaggregation chaperone; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK. | Cpn60 chaperonin GroEL, large subunit of GroESL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. | 0.990 |
clpB | grpE | b2592 | b2614 | Protein disaggregation chaperone; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK. | Heat shock protein; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-depen [...] | 0.998 |
clpB | ibpA | b2592 | b3687 | Protein disaggregation chaperone; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK. | Heat shock chaperone; Associates with aggregated proteins, together with IbpB, to stabilize and protect them from irreversible denaturation and extensive proteolysis during heat shock and oxidative stress. Aggregated proteins bound to the IbpAB complex are more efficiently refolded and reactivated by the ATP-dependent chaperone systems ClpB and DnaK/DnaJ/GrpE. Its activity is ATP-independent. | 0.990 |
clpB | ibpB | b2592 | b3686 | Protein disaggregation chaperone; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK. | Heat shock chaperone; Associates with aggregated proteins, together with IbpA, to stabilize and protect them from irreversible denaturation and extensive proteolysis during heat shock and oxidative stress. Aggregated proteins bound to the IbpAB complex are more efficiently refolded and reactivated by the ATP-dependent chaperone systems ClpB and DnaK/DnaJ/GrpE. Its activity is ATP-independent. | 0.987 |