node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
gadB | gadW | b1493 | b3515 | Glutamate decarboxylase B, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria; Belongs to the group II decarboxylase family. | Transcriptional activator of gadA and gadBC; Depending on the conditions (growth phase and medium), acts as a positive or negative regulator of gadA and gadBC. Repression occurs directly or via the repression of the expression of gadX. Activation occurs directly by the binding of GadW to the gadA and gadBC promoters. | 0.860 |
gadB | gadX | b1493 | b3516 | Glutamate decarboxylase B, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria; Belongs to the group II decarboxylase family. | Acid resistance regulon transcriptional activator; Positively regulates the expression of about fifteen genes involved in acid resistance such as gadA, gadB and gadC. Depending on the conditions (growth phase and medium), can repress gadW. | 0.924 |
gadB | hdeA | b1493 | b3510 | Glutamate decarboxylase B, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria; Belongs to the group II decarboxylase family. | Stress response protein acid-resistance protein; Required for optimal acid stress protection. Exhibits a chaperone-like activity only at pH below 3 by suppressing non- specifically the aggregation of denaturated periplasmic proteins. Important for survival of enteric bacteria in the acidic environment of the host stomach. Also promotes the solubilization at neutral pH of proteins that had aggregated in their presence at acidic pHs. May cooperate with other periplasmic chaperones such as DegP and SurA. | 0.999 |
gadW | gadB | b3515 | b1493 | Transcriptional activator of gadA and gadBC; Depending on the conditions (growth phase and medium), acts as a positive or negative regulator of gadA and gadBC. Repression occurs directly or via the repression of the expression of gadX. Activation occurs directly by the binding of GadW to the gadA and gadBC promoters. | Glutamate decarboxylase B, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria; Belongs to the group II decarboxylase family. | 0.860 |
gadW | gadX | b3515 | b3516 | Transcriptional activator of gadA and gadBC; Depending on the conditions (growth phase and medium), acts as a positive or negative regulator of gadA and gadBC. Repression occurs directly or via the repression of the expression of gadX. Activation occurs directly by the binding of GadW to the gadA and gadBC promoters. | Acid resistance regulon transcriptional activator; Positively regulates the expression of about fifteen genes involved in acid resistance such as gadA, gadB and gadC. Depending on the conditions (growth phase and medium), can repress gadW. | 0.974 |
gadW | hdeA | b3515 | b3510 | Transcriptional activator of gadA and gadBC; Depending on the conditions (growth phase and medium), acts as a positive or negative regulator of gadA and gadBC. Repression occurs directly or via the repression of the expression of gadX. Activation occurs directly by the binding of GadW to the gadA and gadBC promoters. | Stress response protein acid-resistance protein; Required for optimal acid stress protection. Exhibits a chaperone-like activity only at pH below 3 by suppressing non- specifically the aggregation of denaturated periplasmic proteins. Important for survival of enteric bacteria in the acidic environment of the host stomach. Also promotes the solubilization at neutral pH of proteins that had aggregated in their presence at acidic pHs. May cooperate with other periplasmic chaperones such as DegP and SurA. | 0.854 |
gadX | gadB | b3516 | b1493 | Acid resistance regulon transcriptional activator; Positively regulates the expression of about fifteen genes involved in acid resistance such as gadA, gadB and gadC. Depending on the conditions (growth phase and medium), can repress gadW. | Glutamate decarboxylase B, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria; Belongs to the group II decarboxylase family. | 0.924 |
gadX | gadW | b3516 | b3515 | Acid resistance regulon transcriptional activator; Positively regulates the expression of about fifteen genes involved in acid resistance such as gadA, gadB and gadC. Depending on the conditions (growth phase and medium), can repress gadW. | Transcriptional activator of gadA and gadBC; Depending on the conditions (growth phase and medium), acts as a positive or negative regulator of gadA and gadBC. Repression occurs directly or via the repression of the expression of gadX. Activation occurs directly by the binding of GadW to the gadA and gadBC promoters. | 0.974 |
gadX | hdeA | b3516 | b3510 | Acid resistance regulon transcriptional activator; Positively regulates the expression of about fifteen genes involved in acid resistance such as gadA, gadB and gadC. Depending on the conditions (growth phase and medium), can repress gadW. | Stress response protein acid-resistance protein; Required for optimal acid stress protection. Exhibits a chaperone-like activity only at pH below 3 by suppressing non- specifically the aggregation of denaturated periplasmic proteins. Important for survival of enteric bacteria in the acidic environment of the host stomach. Also promotes the solubilization at neutral pH of proteins that had aggregated in their presence at acidic pHs. May cooperate with other periplasmic chaperones such as DegP and SurA. | 0.882 |
hdeA | gadB | b3510 | b1493 | Stress response protein acid-resistance protein; Required for optimal acid stress protection. Exhibits a chaperone-like activity only at pH below 3 by suppressing non- specifically the aggregation of denaturated periplasmic proteins. Important for survival of enteric bacteria in the acidic environment of the host stomach. Also promotes the solubilization at neutral pH of proteins that had aggregated in their presence at acidic pHs. May cooperate with other periplasmic chaperones such as DegP and SurA. | Glutamate decarboxylase B, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria; Belongs to the group II decarboxylase family. | 0.999 |
hdeA | gadW | b3510 | b3515 | Stress response protein acid-resistance protein; Required for optimal acid stress protection. Exhibits a chaperone-like activity only at pH below 3 by suppressing non- specifically the aggregation of denaturated periplasmic proteins. Important for survival of enteric bacteria in the acidic environment of the host stomach. Also promotes the solubilization at neutral pH of proteins that had aggregated in their presence at acidic pHs. May cooperate with other periplasmic chaperones such as DegP and SurA. | Transcriptional activator of gadA and gadBC; Depending on the conditions (growth phase and medium), acts as a positive or negative regulator of gadA and gadBC. Repression occurs directly or via the repression of the expression of gadX. Activation occurs directly by the binding of GadW to the gadA and gadBC promoters. | 0.854 |
hdeA | gadX | b3510 | b3516 | Stress response protein acid-resistance protein; Required for optimal acid stress protection. Exhibits a chaperone-like activity only at pH below 3 by suppressing non- specifically the aggregation of denaturated periplasmic proteins. Important for survival of enteric bacteria in the acidic environment of the host stomach. Also promotes the solubilization at neutral pH of proteins that had aggregated in their presence at acidic pHs. May cooperate with other periplasmic chaperones such as DegP and SurA. | Acid resistance regulon transcriptional activator; Positively regulates the expression of about fifteen genes involved in acid resistance such as gadA, gadB and gadC. Depending on the conditions (growth phase and medium), can repress gadW. | 0.882 |
narX | phoQ | b1222 | b1129 | Sensory histidine kinase in two-component regulatory system with NarL; Acts as a sensor for nitrate/nitrite and transduces signal of nitrate availability to the NarL protein and of both nitrate/nitrite to the NarP protein. NarX probably activates NarL and NarP by phosphorylation in the presence of nitrate. NarX also plays a negative role in controlling NarL activity, probably through dephosphorylation in the absence of nitrate. | Sensory histidine kinase in two-component regulatory system with PhoP; Member of the two-component regulatory system PhoP/PhoQ involved in adaptation to low Mg(2+) environments and the control of acid resistance genes. In low periplasmic Mg(2+), PhoQ functions as a membrane-associated protein kinase that undergoes autophosphorylation and subsequently transfers the phosphate to PhoP, resulting in the expression of PhoP-activated genes (PAG) and repression of PhoP- repressed genes (PRG). In high periplasmic Mg(2+), acts as a protein phosphatase that dephosphorylates phospho-PhoP, resulti [...] | 0.737 |
phoP | phoQ | b1130 | b1129 | Response regulator in two-component regulatory system with PhoQ; Member of the two-component regulatory system PhoP/PhoQ involved in adaptation to low Mg(2+) environments and the control of acid resistance genes. In low periplasmic Mg(2+), PhoQ phosphorylates PhoP, resulting in the expression of PhoP-activated genes (PAG) and repression of PhoP-repressed genes (PRG). In high periplasmic Mg(2+), PhoQ dephosphorylates phospho-PhoP, resulting in the repression of PAG and may lead to expression of some PRG (By similarity). Mediates magnesium influx to the cytosol by activation of MgtA. Pro [...] | Sensory histidine kinase in two-component regulatory system with PhoP; Member of the two-component regulatory system PhoP/PhoQ involved in adaptation to low Mg(2+) environments and the control of acid resistance genes. In low periplasmic Mg(2+), PhoQ functions as a membrane-associated protein kinase that undergoes autophosphorylation and subsequently transfers the phosphate to PhoP, resulting in the expression of PhoP-activated genes (PAG) and repression of PhoP- repressed genes (PRG). In high periplasmic Mg(2+), acts as a protein phosphatase that dephosphorylates phospho-PhoP, resulti [...] | 0.999 |
phoQ | narX | b1129 | b1222 | Sensory histidine kinase in two-component regulatory system with PhoP; Member of the two-component regulatory system PhoP/PhoQ involved in adaptation to low Mg(2+) environments and the control of acid resistance genes. In low periplasmic Mg(2+), PhoQ functions as a membrane-associated protein kinase that undergoes autophosphorylation and subsequently transfers the phosphate to PhoP, resulting in the expression of PhoP-activated genes (PAG) and repression of PhoP- repressed genes (PRG). In high periplasmic Mg(2+), acts as a protein phosphatase that dephosphorylates phospho-PhoP, resulti [...] | Sensory histidine kinase in two-component regulatory system with NarL; Acts as a sensor for nitrate/nitrite and transduces signal of nitrate availability to the NarL protein and of both nitrate/nitrite to the NarP protein. NarX probably activates NarL and NarP by phosphorylation in the presence of nitrate. NarX also plays a negative role in controlling NarL activity, probably through dephosphorylation in the absence of nitrate. | 0.737 |
phoQ | phoP | b1129 | b1130 | Sensory histidine kinase in two-component regulatory system with PhoP; Member of the two-component regulatory system PhoP/PhoQ involved in adaptation to low Mg(2+) environments and the control of acid resistance genes. In low periplasmic Mg(2+), PhoQ functions as a membrane-associated protein kinase that undergoes autophosphorylation and subsequently transfers the phosphate to PhoP, resulting in the expression of PhoP-activated genes (PAG) and repression of PhoP- repressed genes (PRG). In high periplasmic Mg(2+), acts as a protein phosphatase that dephosphorylates phospho-PhoP, resulti [...] | Response regulator in two-component regulatory system with PhoQ; Member of the two-component regulatory system PhoP/PhoQ involved in adaptation to low Mg(2+) environments and the control of acid resistance genes. In low periplasmic Mg(2+), PhoQ phosphorylates PhoP, resulting in the expression of PhoP-activated genes (PAG) and repression of PhoP-repressed genes (PRG). In high periplasmic Mg(2+), PhoQ dephosphorylates phospho-PhoP, resulting in the repression of PAG and may lead to expression of some PRG (By similarity). Mediates magnesium influx to the cytosol by activation of MgtA. Pro [...] | 0.999 |