node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
clpA | clpP | b0882 | b0437 | ATPase and specificity subunit of ClpA-ClpP ATP-dependent serine protease, chaperone activity; ATP-dependent specificity component of the ClpAP protease. It directs the protease to specific substrates. It has unfoldase activity. The primary function of the ClpA-ClpP complex appears to be the degradation of unfolded or abnormal proteins. | Proteolytic subunit of ClpA-ClpP and ClpX-ClpP ATP-dependent serine proteases; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. May play the role of a master protease which is attracted to different substrates by different specificity factors such as ClpA or ClpX. Participates in the final steps of RseA-sigma-E degradation, liberating sigma-E to induce the extracytoplasmic-stress response. Degrades antitoxin MazE. | 0.999 |
clpA | clpX | b0882 | b0438 | ATPase and specificity subunit of ClpA-ClpP ATP-dependent serine protease, chaperone activity; ATP-dependent specificity component of the ClpAP protease. It directs the protease to specific substrates. It has unfoldase activity. The primary function of the ClpA-ClpP complex appears to be the degradation of unfolded or abnormal proteins. | ATPase and specificity subunit of ClpX-ClpP ATP-dependent serine protease; ATP-dependent specificity component of the Clp protease. Uses cycles of ATP binding and hydrolysis to unfold proteins and translocate them to the ClpP protease. It directs the protease to specific substrates both with and without the help of adapter proteins such as SspB. Participates in the final steps of RseA-sigma-E degradation, liberating sigma-E to induce the extracytoplasmic-stress response. It may bind to the lambda O substrate protein and present it to the ClpP protease in a form that can be recognized a [...] | 0.979 |
clpA | dnaJ | b0882 | b0015 | ATPase and specificity subunit of ClpA-ClpP ATP-dependent serine protease, chaperone activity; ATP-dependent specificity component of the ClpAP protease. It directs the protease to specific substrates. It has unfoldase activity. The primary function of the ClpA-ClpP complex appears to be the degradation of unfolded or abnormal proteins. | Chaperone Hsp40, DnaK co-chaperone; Interacts with DnaK and GrpE to disassemble a protein complex at the origins of replication of phage lambda and several plasmids. Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK t [...] | 0.783 |
clpA | dnaK | b0882 | b0014 | ATPase and specificity subunit of ClpA-ClpP ATP-dependent serine protease, chaperone activity; ATP-dependent specificity component of the ClpAP protease. It directs the protease to specific substrates. It has unfoldase activity. The primary function of the ClpA-ClpP complex appears to be the degradation of unfolded or abnormal proteins. | Chaperone Hsp70, with co-chaperone DnaJ; Plays an essential role in the initiation of phage lambda DNA replication, where it acts in an ATP-dependent fashion with the DnaJ protein to release lambda O and P proteins from the preprimosomal complex. DnaK is also involved in chromosomal DNA replication, possibly through an analogous interaction with the DnaA protein. Also participates actively in the response to hyperosmotic shock. | 0.859 |
clpA | grpE | b0882 | b2614 | ATPase and specificity subunit of ClpA-ClpP ATP-dependent serine protease, chaperone activity; ATP-dependent specificity component of the ClpAP protease. It directs the protease to specific substrates. It has unfoldase activity. The primary function of the ClpA-ClpP complex appears to be the degradation of unfolded or abnormal proteins. | Heat shock protein; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-depen [...] | 0.875 |
clpA | hslU | b0882 | b3931 | ATPase and specificity subunit of ClpA-ClpP ATP-dependent serine protease, chaperone activity; ATP-dependent specificity component of the ClpAP protease. It directs the protease to specific substrates. It has unfoldase activity. The primary function of the ClpA-ClpP complex appears to be the degradation of unfolded or abnormal proteins. | Molecular chaperone and ATPase component of HslUV protease; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis. | 0.916 |
clpA | hslV | b0882 | b3932 | ATPase and specificity subunit of ClpA-ClpP ATP-dependent serine protease, chaperone activity; ATP-dependent specificity component of the ClpAP protease. It directs the protease to specific substrates. It has unfoldase activity. The primary function of the ClpA-ClpP complex appears to be the degradation of unfolded or abnormal proteins. | Peptidase component of the HslUV protease; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery. The complex has been shown to be involved in the specific degradation of heat shock induced transcription factors such as RpoH and SulA. In addition, small hydrophobic peptides are also hydrolyzed by HslV. HslV has weak protease activity even in the absence of HslU, but this activity is induced more than 100-fold in the presence of HslU. HslU recognizes protein substrates and unfolds these before guiding them to HslV for hydrolysis. [...] | 0.919 |
clpA | lon | b0882 | b0439 | ATPase and specificity subunit of ClpA-ClpP ATP-dependent serine protease, chaperone activity; ATP-dependent specificity component of the ClpAP protease. It directs the protease to specific substrates. It has unfoldase activity. The primary function of the ClpA-ClpP complex appears to be the degradation of unfolded or abnormal proteins. | DNA-binding ATP-dependent protease La; ATP-dependent serine protease that mediates the selective degradation of mutant and abnormal proteins as well as certain short- lived regulatory proteins, including some antitoxins. Required for cellular homeostasis and for survival from DNA damage and developmental changes induced by stress. Degrades polypeptides processively to yield small peptide fragments that are 5 to 10 amino acids long. Binds to DNA in a double-stranded, site-specific manner. Endogenous substrates include the regulatory proteins RcsA and SulA, the transcriptional activator [...] | 0.808 |
clpA | umuD | b0882 | b1183 | ATPase and specificity subunit of ClpA-ClpP ATP-dependent serine protease, chaperone activity; ATP-dependent specificity component of the ClpAP protease. It directs the protease to specific substrates. It has unfoldase activity. The primary function of the ClpA-ClpP complex appears to be the degradation of unfolded or abnormal proteins. | Translesion error-prone DNA polymerase V subunit; Involved in UV protection and mutation. Poorly processive, error-prone DNA polymerase involved in translesion repair. Essential for induced (or SOS) mutagenesis. Able to replicate DNA across DNA lesions (thymine photodimers and abasic sites, called translesion synthesis) in the presence of activated RecA; efficiency is maximal in the presence of the beta sliding-clamp and clamp-loading complex of DNA polymerase III plus single-stranded binding protein (SSB). RecA and to a lesser extent the beta clamp-complex may target Pol V to replicat [...] | 0.433 |
clpA | uvrA | b0882 | b4058 | ATPase and specificity subunit of ClpA-ClpP ATP-dependent serine protease, chaperone activity; ATP-dependent specificity component of the ClpAP protease. It directs the protease to specific substrates. It has unfoldase activity. The primary function of the ClpA-ClpP complex appears to be the degradation of unfolded or abnormal proteins. | ATPase and DNA damage recognition protein of nucleotide excision repair excinuclease UvrABC; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate. | 0.424 |
clpB | clpP | b2592 | b0437 | Protein disaggregation chaperone; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK. | Proteolytic subunit of ClpA-ClpP and ClpX-ClpP ATP-dependent serine proteases; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. May play the role of a master protease which is attracted to different substrates by different specificity factors such as ClpA or ClpX. Participates in the final steps of RseA-sigma-E degradation, liberating sigma-E to induce the extracytoplasmic-stress response. Degrades antitoxin MazE. | 0.984 |
clpB | clpX | b2592 | b0438 | Protein disaggregation chaperone; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK. | ATPase and specificity subunit of ClpX-ClpP ATP-dependent serine protease; ATP-dependent specificity component of the Clp protease. Uses cycles of ATP binding and hydrolysis to unfold proteins and translocate them to the ClpP protease. It directs the protease to specific substrates both with and without the help of adapter proteins such as SspB. Participates in the final steps of RseA-sigma-E degradation, liberating sigma-E to induce the extracytoplasmic-stress response. It may bind to the lambda O substrate protein and present it to the ClpP protease in a form that can be recognized a [...] | 0.972 |
clpB | dnaJ | b2592 | b0015 | Protein disaggregation chaperone; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK. | Chaperone Hsp40, DnaK co-chaperone; Interacts with DnaK and GrpE to disassemble a protein complex at the origins of replication of phage lambda and several plasmids. Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK t [...] | 0.996 |
clpB | dnaK | b2592 | b0014 | Protein disaggregation chaperone; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK. | Chaperone Hsp70, with co-chaperone DnaJ; Plays an essential role in the initiation of phage lambda DNA replication, where it acts in an ATP-dependent fashion with the DnaJ protein to release lambda O and P proteins from the preprimosomal complex. DnaK is also involved in chromosomal DNA replication, possibly through an analogous interaction with the DnaA protein. Also participates actively in the response to hyperosmotic shock. | 0.999 |
clpB | grpE | b2592 | b2614 | Protein disaggregation chaperone; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK. | Heat shock protein; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-depen [...] | 0.998 |
clpB | hslU | b2592 | b3931 | Protein disaggregation chaperone; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK. | Molecular chaperone and ATPase component of HslUV protease; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis. | 0.989 |
clpB | hslV | b2592 | b3932 | Protein disaggregation chaperone; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK. | Peptidase component of the HslUV protease; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery. The complex has been shown to be involved in the specific degradation of heat shock induced transcription factors such as RpoH and SulA. In addition, small hydrophobic peptides are also hydrolyzed by HslV. HslV has weak protease activity even in the absence of HslU, but this activity is induced more than 100-fold in the presence of HslU. HslU recognizes protein substrates and unfolds these before guiding them to HslV for hydrolysis. [...] | 0.976 |
clpB | lon | b2592 | b0439 | Protein disaggregation chaperone; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK. | DNA-binding ATP-dependent protease La; ATP-dependent serine protease that mediates the selective degradation of mutant and abnormal proteins as well as certain short- lived regulatory proteins, including some antitoxins. Required for cellular homeostasis and for survival from DNA damage and developmental changes induced by stress. Degrades polypeptides processively to yield small peptide fragments that are 5 to 10 amino acids long. Binds to DNA in a double-stranded, site-specific manner. Endogenous substrates include the regulatory proteins RcsA and SulA, the transcriptional activator [...] | 0.933 |
clpB | uvrA | b2592 | b4058 | Protein disaggregation chaperone; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK. | ATPase and DNA damage recognition protein of nucleotide excision repair excinuclease UvrABC; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate. | 0.471 |
clpB | uvrB | b2592 | b0779 | Protein disaggregation chaperone; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK. | Exision nuclease of nucleotide excision repair, DNA damage recognition component; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesi [...] | 0.446 |