Your Input: | |||||
clpP | Proteolytic subunit of ClpA-ClpP and ClpX-ClpP ATP-dependent serine proteases; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. May play the role of a master protease which is attracted to different substrates by different specificity factors such as ClpA or ClpX. Participates in the final steps of RseA-sigma-E degradation, liberating sigma-E to induce the extracytoplasmic-stress response. Degrades antitoxin MazE. (207 aa) | ||||
dnaJ | Chaperone Hsp40, DnaK co-chaperone; Interacts with DnaK and GrpE to disassemble a protein complex at the origins of replication of phage lambda and several plasmids. Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK t [...] (376 aa) | ||||
surA | Peptidyl-prolyl cis-trans isomerase (PPIase); Chaperone involved in the correct folding and assembly of outer membrane proteins, such as OmpA, OmpF and LamB. Recognizes specific patterns of aromatic residues and the orientation of their side chains, which are found more frequently in integral outer membrane proteins. May act in both early periplasmic and late outer membrane- associated steps of protein maturation. Essential for the survival of E.coli in stationary phase. Required for pilus biogenesis. (428 aa) | ||||
clpX | ATPase and specificity subunit of ClpX-ClpP ATP-dependent serine protease; ATP-dependent specificity component of the Clp protease. Uses cycles of ATP binding and hydrolysis to unfold proteins and translocate them to the ClpP protease. It directs the protease to specific substrates both with and without the help of adapter proteins such as SspB. Participates in the final steps of RseA-sigma-E degradation, liberating sigma-E to induce the extracytoplasmic-stress response. It may bind to the lambda O substrate protein and present it to the ClpP protease in a form that can be recognized a [...] (424 aa) | ||||
lon | DNA-binding ATP-dependent protease La; ATP-dependent serine protease that mediates the selective degradation of mutant and abnormal proteins as well as certain short- lived regulatory proteins, including some antitoxins. Required for cellular homeostasis and for survival from DNA damage and developmental changes induced by stress. Degrades polypeptides processively to yield small peptide fragments that are 5 to 10 amino acids long. Binds to DNA in a double-stranded, site-specific manner. Endogenous substrates include the regulatory proteins RcsA and SulA, the transcriptional activator [...] (784 aa) | ||||
cstA | Carbon starvation protein involved in peptide utilization; Involved in peptide utilization during carbon starvation. (701 aa) | ||||
mdfA | Multidrug efflux system protein; Efflux pump driven by the proton motive force. Confers resistance to a broad spectrum of chemically unrelated drugs. Confers resistance to a diverse group of cationic or zwitterionic lipophilic compounds such as ethidium bromide, tetraphenylphosphonium, rhodamine, daunomycin, benzalkonium, rifampicin, tetracycline, puromycin, and to chemically unrelated, clinically important antibiotics such as chloramphenicol, erythromycin, and certain aminoglycosides and fluoroquinolones. Overexpression results in isopropyl-beta-D- thiogalactopyranoside (IPTG) exclusi [...] (410 aa) | ||||
cspD | Inhibitor of DNA replication, cold shock protein homolog; Inhibits DNA replication at both initiation and elongation steps, most probably by binding to the opened, single-stranded regions at replication forks. Plays a regulatory role in chromosomal replication in nutrient-depleted cells. (74 aa) | ||||
gmr | cyclic-di-GMP phosphodiesterase; Part of a signaling cascade that regulates curli biosynthesis. The cascade is composed of two cyclic-di-GMP (c-di-GMP) control modules, in which c-di-GMP controlled by the DgcE/PdeH pair (module I) regulates the activity of the DgcM/PdeR pair (module II), which in turn regulates activity of the transcription factor MlrA and expression of the master biofilm regulator csgD. PdeR acts as a trigger enzyme that connects modules I and II. It inhibits DgcM and MlrA by direct interaction. Inhibition is relieved when PdeR binds and degrades c-di-GMP generated by [...] (661 aa) | ||||
gadB | Glutamate decarboxylase B, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria; Belongs to the group II decarboxylase family. (466 aa) | ||||
relE | Qin prophage; Toxic component of a type II toxin-antitoxin (TA) system. A sequence-specific, ribosome-dependent mRNA endoribonuclease that inhibits translation during amino acid starvation (the stringent response). In vitro acts by cleaving mRNA with high codon specificity in the ribosomal A site between positions 2 and 3. The stop codon UAG is cleaved at a fast rate while UAA and UGA are cleaved with intermediate and slow rates. In vitro mRNA cleavage can also occur in the ribosomal E site after peptide release from peptidyl- tRNA in the P site as well as on free 30S subunits. In vivo [...] (95 aa) | ||||
relB | Antitoxin of the RelE-RelB toxin-antitoxin syste; Antitoxin component of a type II toxin-antitoxin (TA) system. Counteracts the effect of cognate toxin RelE via direct protein-protein interaction, preventing RelE from entering the ribosome A site and thus inhibiting its endoribonuclease activity. An autorepressor of relBE operon transcription. 2 RelB dimers bind to 2 operator sequences; DNA- binding and repression is stronger when complexed with toxin/corepressor RelE by conditional cooperativity. Increased transcription rate of relBE and activation of relE is consistent with a lower l [...] (79 aa) | ||||
osmE | Osmotically-inducible lipoprotein; Activator of ntrL gene; Protein involved in transcription activator activity, transcription and response to osmotic stress. (112 aa) | ||||
yodD | Uncharacterized protein. (75 aa) | ||||
yeiL | Putative transcriptional regulator; Transcription regulator involved in mid-term, stationary- phase viability under nitrogen starvation. Might control expression of the salvage pathways or in some other way repress the recycling of nucleobases to nucleic acids and enhance their use as general nitrogen sources during nitrogen-limited growth. (219 aa) | ||||
glpT | Sn-glycerol-3-phosphate transporter; Responsible for glycerol-3-phosphate uptake. (452 aa) | ||||
clpB | Protein disaggregation chaperone; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK. (857 aa) | ||||
yfjZ | CP4-57 prophage; Antitoxin component of a type IV toxin-antitoxin (TA) system. Antitoxin that counteracts the effect of cognate toxin YpjF. Also counteracts the effect of non-cognate toxins CbtA and YfkI. (105 aa) | ||||
mazF | mRNA interferase toxin, antitoxin is MazE; Toxic component of a type II toxin-antitoxin (TA) system. A sequence-specific endoribonuclease it inhibits protein synthesis by cleaving mRNA and inducing bacterial stasis. It is stable, single- strand specific with mRNA cleavage independent of the ribosome, although translation enhances cleavage for some mRNAs. Cleavage occurs at the 5'-end of ACA sequences, yielding a 2',3'-cyclic phosphate and a free 5'-OH, although cleavage can also occur on the 3'-end of the first A. Digests 16S rRNA in vivo 43 nts upstream of the C- terminus; this remove [...] (111 aa) | ||||
yggE | Oxidative stress defense protein; Putative actin. (246 aa) | ||||
mqsA | Antitoxin for MqsR toxin; Antitoxin component of a type II toxin-antitoxin (TA) system. Labile antitoxin that binds to the MqsR mRNA interferase toxin and neutralizes its endoribonuclease activity. Overexpression prevents MqsR-mediated cessation of cell growth and inhibition of cell proliferation. Initially reported to act as a cotranscription factor with MqsA. Following further experiments, the MqsR-MqsA complex does not bind DNA and all reported data are actually due to a small fraction of free MqsA alone binding DNA. Addition of MqsR to a preformed MqsA-promoter DNA complex causes d [...] (131 aa) | ||||
mqsR | GCU-specific mRNA interferase toxin of the MqsR-MqsA toxin-antitoxin system; Toxic component of a type II toxin-antitoxin (TA) system. Plays a significant role in the control of biofilm formation and induction of persister cells in the presence of antibiotics. An mRNA interferase which has been reported to be translation-independent. It has also been reported to be translation-dependent. Cleavage has been reported to occur on either side of G in the sequence GCU. Also reported to cleave after C in GC(A/U) sequences. There are only 14 genes in E.coli W3110 (and probably also MG1655) tha [...] (98 aa) | ||||
ygiW | Hydrogen peroxide and cadmium resistance periplasmic protein; stress-induced OB-fold protein. (130 aa) | ||||
glpD | Sn-glycerol-3-phosphate dehydrogenase, aerobic, FAD/NAD(P)-binding; Conversion of glycerol 3-phosphate to dihydroxyacetone. Uses molecular oxygen or nitrate as electron acceptor. (501 aa) | ||||
hdeB | Acid-resistance protein; Required for optimal acid stress protection, which is important for survival of enteric bacteria in the acidic environment of the host stomach. Exhibits a chaperone-like activity at acidic pH by preventing the aggregation of many different periplasmic proteins. (108 aa) | ||||
hdeA | Stress response protein acid-resistance protein; Required for optimal acid stress protection. Exhibits a chaperone-like activity only at pH below 3 by suppressing non- specifically the aggregation of denaturated periplasmic proteins. Important for survival of enteric bacteria in the acidic environment of the host stomach. Also promotes the solubilization at neutral pH of proteins that had aggregated in their presence at acidic pHs. May cooperate with other periplasmic chaperones such as DegP and SurA. (110 aa) | ||||
gadE | Gad regulon transcriptional activator; Regulates the expression of several genes involved in acid resistance. Required for the expression of gadA and gadBC, among others, regardless of media or growth conditions. Binds directly to the 20 bp GAD box found in the control regions of both loci. (175 aa) | ||||
mdtE | Anaerobic multidrug efflux transporter, ArcA-regulated; Part of the tripartite efflux system MdtEF-TolC, which confers resistance to compounds such as rhodamine 6G, erythromycin, doxorubicin, ethidium bromide, TPP, SDS, deoxycholate, crystal violet and benzalkonium; Belongs to the membrane fusion protein (MFP) (TC 8.A.1) family. (385 aa) | ||||
mdtF | Anaerobic multidrug efflux transporter, ArcA-regulated; Part of the tripartite efflux system MdtEF-TolC, which confers resistance to compounds such as rhodamine 6G, erythromycin, doxorubicin, ethidium bromide, TPP, SDS, deoxycholate, crystal violet and benzalkonium; Belongs to the resistance-nodulation-cell division (RND) (TC 2.A.6) family. (1037 aa) | ||||
gadW | Transcriptional activator of gadA and gadBC; Depending on the conditions (growth phase and medium), acts as a positive or negative regulator of gadA and gadBC. Repression occurs directly or via the repression of the expression of gadX. Activation occurs directly by the binding of GadW to the gadA and gadBC promoters. (242 aa) | ||||
gadX | Acid resistance regulon transcriptional activator; Positively regulates the expression of about fifteen genes involved in acid resistance such as gadA, gadB and gadC. Depending on the conditions (growth phase and medium), can repress gadW. (274 aa) | ||||
gadA | Glutamate decarboxylase A, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria. (466 aa) | ||||
tnaC | Tryptophanase leader peptide; Required for tryptophan-regulated expression of the tna operon. In the presence of free L-Trp release of this nascent peptide by release factor 2 is inhibited and the ribosome stalls with the last amino acid in the P site and a UGA stop codon in the A site. This prevent transcripiton termination factor Rho binding, and thus allows transcription and translation of TnaA and TnaB. (24 aa) | ||||
rbsA | D-ribose ABC transporter ATPase; Part of the ABC transporter complex RbsABC involved in ribose import. Responsible for energy coupling to the transport system. Belongs to the ABC transporter superfamily. Ribose importer (TC 3.A.1.2.1) family. (501 aa) | ||||
osmY | Salt-inducible putative ABC transporter periplasmic binding protein; Hyperosmotically inducible periplasmic protein; Protein involved in response to osmotic stress. (201 aa) | ||||
hokA | Protein HokA; Toxic component of a type I toxin-antitoxin (TA) system (Probable). When overexpressed kills cells within minutes; causes collapse of the transmembrane potential and arrest of respiration. Its toxic effect is probably neutralized by antisense antitoxin RNA SokA. Belongs to the Hok/Gef family. (50 aa) | ||||
yoeB | Toxin of the YoeB-YefM toxin-antitoxin system; Toxic component of a type II toxin-antitoxin (TA) system. Its mode of function is controversial; it has been proposed to be an mRNA interferase but also an inhibitor of translation initiation. When overproduced in wild-type cells, inhibits bacterial growth and translation by cleavage of mRNA molecules while it has a weak effect on colony forming ability. Overproduction of Lon protease specifically activates YoeB-dependent mRNA cleavage, leading to lethality. YefM binds to the promoter region of the yefM-yeoB operon to repress transcription [...] (84 aa) |