STRINGSTRING
dmsC dmsC ynfE ynfE ynfF ynfF napC napC recA recA nrfD nrfD dmsB dmsB dmsA dmsA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
dmsCDimethyl sulfoxide reductase, anaerobic, subunit C; Terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds. DmsC anchors the DmsAB dimer to the membrane and stabilizes it. (287 aa)
ynfEPutative selenate reductase, periplasmic; Terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. (808 aa)
ynfFS- and N-oxide reductase, A subunit, periplasmic; Terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds. (807 aa)
napCQuinol dehydrogenase, electron source for NapAB; Mediates electron flow from quinones to the NapAB complex. (200 aa)
recADNA recombination and repair protein; Required for homologous recombination and the bypass of mutagenic DNA lesions by the SOS response. Catalyzes ATP-driven homologous pairing and strand exchange of DNA molecules necessary for DNA recombinational repair. Catalyzes the hydrolysis of ATP in the presence of single-stranded DNA, the ATP-dependent uptake of single- stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. The SOS response controls an apoptotic-like death (ALD) induced (in the absence of the mazE-mazF toxin-antitoxin module) in resp [...] (353 aa)
nrfDFormate-dependent nitrite reductase, membrane subunit; Probably involved in the transfer of electrons from the quinone pool to the type-c cytochromes; Belongs to the NrfD family. (318 aa)
dmsBDimethyl sulfoxide reductase, anaerobic, subunit B; Electron transfer subunit of the terminal reductase during anaerobic growth on various sulfoxide and N-oxide compounds. (205 aa)
dmsADimethyl sulfoxide reductase, anaerobic, subunit A; Catalyzes the reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS). DMSO reductase serves as the terminal reductase under anaerobic conditions, with DMSO being the terminal electron acceptor. Terminal reductase during anaerobic growth on various sulfoxides and N-oxide compounds. Allows E.coli to grow anaerobically on DMSO as respiratory oxidant. (814 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (16%) [HD]