STRINGSTRING
napB napB dsdA dsdA dsbC dsbC ccmA ccmA nrfA nrfA dsbD dsbD dsbB dsbB dsbA dsbA dsbE dsbE
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
napBNitrate reductase, small, cytochrome C550 subunit, periplasmic; Electron transfer subunit of the periplasmic nitrate reductase complex NapAB. Receives electrons from the membrane-anchored tetraheme c-type NapC protein and transfers these to NapA subunit, thus allowing electron flow between membrane and periplasm. Essential for periplasmic nitrate reduction with nitrate as the terminal electron acceptor; Belongs to the NapB family. (149 aa)
dsdAD-serine dehydratase (deaminase); Protein involved in cellular amino acid catabolic process. (442 aa)
dsbCProtein disulfide isomerase II; Acts as a disulfide isomerase, interacting with incorrectly folded proteins to correct non-native disulfide bonds. DsbG and DsbC are part of a periplasmic reducing system that controls the level of cysteine sulfenylation, and provides reducing equivalents to rescue oxidatively damaged secreted proteins. Acts by transferring its disulfide bond to other proteins and is reduced in the process. DsbC is reoxidized by DsbD. (236 aa)
ccmAHeme export ABC transporter ATPase; Part of the ABC transporter complex CcmAB involved in the biogenesis of c-type cytochromes; once thought to export heme, this seems not to be the case, but its exact role is uncertain. Responsible for energy coupling to the transport system. (207 aa)
nrfANitrite reductase, formate-dependent, cytochrome; Catalyzes the reduction of nitrite to ammonia, consuming six electrons in the process. Has very low activity toward hydroxylamine. Has even lower activity toward sulfite. Sulfite reductase activity is maximal at neutral pH (By similarity). (478 aa)
dsbDThiol:disulfide interchange protein and activator of DsbC; Required to facilitate the formation of correct disulfide bonds in some periplasmic proteins and for the assembly of the periplasmic c-type cytochromes. Acts by transferring electrons from cytoplasmic thioredoxin to the periplasm, thereby maintaining the active site of DsbC, DsbE and DsbG in a reduced state. This transfer involves a cascade of disulfide bond formation and reduction steps; Belongs to the thioredoxin family. DsbD subfamily. (565 aa)
dsbBOxidoreductase that catalyzes reoxidation of DsbA protein disulfide isomerase I; Required for disulfide bond formation in some periplasmic proteins such as PhoA or OmpA. Acts by oxidizing the DsbA protein. PhoP-regulated transcription is redox-sensitive, being activated when the periplasm becomes more reducing (deletion of dsbA/dsbB, treatment with dithiothreitol). MgrB acts between DsbA/DsbB and PhoP/PhoQ in this pathway. (176 aa)
dsbAPeriplasmic protein disulfide isomerase I; Required for disulfide bond formation in some periplasmic proteins such as PhoA or OmpA. Acts by transferring its disulfide bond to other proteins and is reduced in the process. DsbA is reoxidized by DsbB. Required for pilus biogenesis. PhoP-regulated transcription is redox-sensitive, being activated when the periplasm becomes more reducing (deletion of dsbA/dsbB, treatment with dithiothreitol). MgrB acts between DsbA/DsbB and PhoP/PhoQ in this pathway. Belongs to the thioredoxin family. DsbA subfamily. (208 aa)
dsbEPeriplasmic thioredoxin of cytochrome c-type biogenesis; Involved in disulfide bond formation. Catalyzes a late, reductive step in the assembly of periplasmic c-type cytochromes, probably the reduction of disulfide bonds of the apocytochrome c to allow covalent linkage with the heme. Possible subunit of a heme lyase. DsbE is maintained in a reduced state by DsbD. (185 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (20%) [HD]