Your Input: | |||||
gapA | Glyceraldehyde-3-phosphate dehydrogenase A; Catalyzes the oxidative phosphorylation of glyceraldehyde 3- phosphate (G3P) to 1,3-bisphosphoglycerate (BPG) using the cofactor NAD. The first reaction step involves the formation of a hemiacetal intermediate between G3P and a cysteine residue, and this hemiacetal intermediate is then oxidized to a thioester, with concomitant reduction of NAD to NADH. The reduced NADH is then exchanged with the second NAD, and the thioester is attacked by a nucleophilic inorganic phosphate to produce BPG. (331 aa) | ||||
lpd | Dihydrolipoyl dehydrogenase; Lipoamide dehydrogenase is a component of the glycine cleavage system as well as of the alpha-ketoacid dehydrogenase complexes. (474 aa) | ||||
fabZ | (3R)-hydroxymyristol acyl carrier protein dehydratase; Involved in unsaturated fatty acids biosynthesis. Catalyzes the dehydration of short chain beta-hydroxyacyl-ACPs and long chain saturated and unsaturated beta-hydroxyacyl-ACPs. (151 aa) | ||||
fadE | Acyl coenzyme A dehydrogenase; Catalyzes the dehydrogenation of acyl-coenzymes A (acyl-CoAs) to 2-enoyl-CoAs, the first step of the beta-oxidation cycle of fatty acid degradation. Is required for E.coli to utilize dodecanoate or oleate as the sole carbon and energy source for growth. (814 aa) | ||||
tesA | acyl-CoA thioesterase 1 and protease I and lysophospholipase L1; TesA is a multifunctional esterase that can act as a thioesterase, lysophospholipase and protease. TesA functions as a thioesterase specific for fatty acyl thioesters of greater than ten carbons, with highest activity on palmitoyl-CoA, cis-vaccenyl-CoA and palmitoleoyl-CoA. TesA also possesses an arylesterase activity towards short acyl-chain aromatic esters such as alpha-naphthyl acetate, alpha-naphthyl butyrate, benzyl acetate and phenyl acetate. Also able to hydrolyze short acyl-chain triacylglycerols such as triacetin [...] (208 aa) | ||||
folD | Methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. This enzyme is specific for NADP. (288 aa) | ||||
gltA | Citrate synthase; Protein involved in tricarboxylic acid cycle and anaerobic respiration; Belongs to the citrate synthase family. (427 aa) | ||||
gpmA | Phosphoglyceromutase 1; Catalyzes the interconversion of 2-phosphoglycerate and 3- phosphoglycerate; Belongs to the phosphoglycerate mutase family. BPG- dependent PGAM subfamily. (250 aa) | ||||
fabA | Beta-hydroxydecanoyl thioester dehydrase; Necessary for the introduction of cis unsaturation into fatty acids. Catalyzes the dehydration of (3R)-3-hydroxydecanoyl-ACP to E- (2)-decenoyl-ACP and then its isomerization to Z-(3)-decenoyl-ACP. Can catalyze the dehydratase reaction for beta-hydroxyacyl-ACPs with saturated chain lengths up to 16:0, being most active on intermediate chain length. Is inactive in the dehydration of long chain unsaturated beta-hydroxyacyl-ACP. (172 aa) | ||||
fabH | 3-oxoacyl-[acyl-carrier-protein] synthase III; Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP. Catalyzes the first condensation reaction which initiates fatty acid synthesis and may therefore play a role in governing the total rate of fatty acid production. Possesses both acetoacetyl-ACP synthase and acetyl transacylase activities. Has some substrate specificity for acetyl-CoA. Its substrate specificity determines the biosynthesis of straight-chain of fatty acids instead of branched-chain; Belongs to the t [...] (317 aa) | ||||
fabD | malonyl-CoA-[acyl-carrier-protein] transacylase; Belongs to the FabD family. (309 aa) | ||||
acpP | Acyl carrier protein (ACP); Carrier of the growing fatty acid chain in fatty acid biosynthesis; Belongs to the acyl carrier protein (ACP) family. (78 aa) | ||||
fabF | 3-oxoacyl-[acyl-carrier-protein] synthase II; Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP. Has a preference for short chain acid substrates and may function to supply the octanoic substrates for lipoic acid biosynthesis. (413 aa) | ||||
icd | Isocitrate dehydrogenase, specific for NADP+; Protein involved in tricarboxylic acid cycle and anaerobic respiration; Belongs to the isocitrate and isopropylmalate dehydrogenases family. (416 aa) | ||||
trpC | Indole-3-glycerolphosphate synthetase and N-(5-phosphoribosyl)anthranilate isomerase; Bifunctional enzyme that catalyzes two sequential steps of tryptophan biosynthetic pathway. The first reaction is catalyzed by the isomerase, coded by the TrpF domain; the second reaction is catalyzed by the synthase, coded by the TrpC domain. (453 aa) | ||||
sieB | Phage superinfection exclusion protein. (162 aa) | ||||
fadK | Short chain acyl-CoA synthetase, anaerobic; Catalyzes the esterification, concomitant with transport, of exogenous fatty acids into metabolically active CoA thioesters for subsequent degradation or incorporation into phospholipids. Is maximally active on C6:0, C8:0 and C12:0 fatty acids, while has a low activity on C14-C18 chain length fatty acids. Is involved in the anaerobic beta-oxidative degradation of fatty acids, which allows anaerobic growth of E.coli on fatty acids as a sole carbon and energy source in the presence of nitrate or fumarate as a terminal electron acceptor. Can fun [...] (548 aa) | ||||
fadD | acyl-CoA synthetase (long-chain-fatty-acid--CoA ligase); Catalyzes the esterification, concomitant with transport, of exogenous long-chain fatty acids into metabolically active CoA thioesters for subsequent degradation or incorporation into phospholipids. Activity is the highest with fatty acid substrates of > 10 carbon atoms. Is involved in the aerobic beta- oxidative degradation of fatty acids, which allows aerobic growth of E.coli on fatty acids as a sole carbon and energy source. (561 aa) | ||||
fabB | 3-oxoacyl-[acyl-carrier-protein] synthase I; Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP. Specific for elongation from C-10 to unsaturated C-16 and C-18 fatty acids; Belongs to the thiolase-like superfamily. Beta-ketoacyl-ACP synthases family. (406 aa) | ||||
glyA | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. Thus, is able to catalyze the cleavage of allothreonine and 3-phenylserine. Also catalyzes the irreversible conversion of 5,10-m [...] (417 aa) | ||||
pssA | Phosphatidylserine synthase; phospholipid synthesis; Protein involved in phospholipid biosynthetic process. (451 aa) | ||||
idi | Isopentenyl diphosphate isomerase; Catalyzes the 1,3-allylic rearrangement of the homoallylic substrate isopentenyl (IPP) to its highly electrophilic allylic isomer, dimethylallyl diphosphate (DMAPP). (182 aa) | ||||
pgk | Phosphoglycerate kinase; Protein involved in glycolysis and gluconeogenesis; Belongs to the phosphoglycerate kinase family. (387 aa) | ||||
mdh | Malate dehydrogenase, NAD(P)-binding; Catalyzes the reversible oxidation of malate to oxaloacetate. (312 aa) | ||||
gpmM | Phosphoglycero mutase III, cofactor-independent; Catalyzes the interconversion of 2-phosphoglycerate (2-PGA) and 3-phosphoglycerate (3-PGA). (514 aa) | ||||
fadA | 3-ketoacyl-CoA thiolase (thiolase I); Catalyzes the final step of fatty acid oxidation in which acetyl-CoA is released and the CoA ester of a fatty acid two carbons shorter is formed. Involved in the aerobic and anaerobic degradation of long-chain fatty acids. (387 aa) | ||||
psd | Phosphatidylserine decarboxylase; Catalyzes the formation of phosphatidylethanolamine (PtdEtn) from phosphatidylserine (PtdSer). Only decarboxylates the lipid-linked form of the serine moiety, and not serine alone or derivatives like phosphoserine or glycerophosphoserine. (322 aa) |