STRINGSTRING
erpA erpA dnaK dnaK yaaA yaaA mrp mrp ispG ispG fdx fdx hscA hscA iscU iscU iscS iscS iscR iscR hypB hypB csdE csdE ygfZ ygfZ nfuA nfuA cyaY cyaY soxR soxR nsrR nsrR ytfE ytfE ftnA ftnA sufA sufA sufB sufB sufC sufC sufD sufD grxD grxD bioB bioB nadA nadA miaB miaB
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
erpAIron-sulfur cluster insertion protein; Probably involved in the insertion of Fe-S clusters into apoproteins in vivo including IspG and/or IspH. Essential for growth under aerobic conditions and for anaerobic respiration but not for fermentation. In vitro it binds Fe-S clusters and transfers them to apo-IspG, which is involved in quinone biosynthesis among many other cell components. Experiments indicate that it is probably also involved in the insertion of other Fe-S clusters than IspG/IspH; Belongs to the HesB/IscA family. (114 aa)
dnaKChaperone Hsp70, with co-chaperone DnaJ; Plays an essential role in the initiation of phage lambda DNA replication, where it acts in an ATP-dependent fashion with the DnaJ protein to release lambda O and P proteins from the preprimosomal complex. DnaK is also involved in chromosomal DNA replication, possibly through an analogous interaction with the DnaA protein. Also participates actively in the response to hyperosmotic shock. (638 aa)
yaaAPeroxide resistance protein, lowers intracellular iron; Involved in the cellular response to hydrogen peroxide (H(2)O(2)) stress. During H(2)O(2) stress, prevents oxidative damage to both DNA and proteins by diminishing the amount of unincorporated iron within the cell. (258 aa)
mrpAntiporter inner membrane protein; Binds and transfers iron-sulfur (Fe-S) clusters to target apoproteins. Can hydrolyze ATP; Belongs to the Mrp/NBP35 ATP-binding proteins family. (369 aa)
ispG1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase; Converts 2C-methyl-D-erythritol 2,4-cyclodiphosphate (ME- 2,4cPP) into 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate, using flavodoxin as the reducing agent; Belongs to the IspG family. (372 aa)
fdx[2Fe-2S] ferredoxin; Ferredoxin are iron-sulfur proteins that transfer electrons in a wide variety of metabolic reactions. Although the function of this ferredoxin is unknown it is probable that it has a role as a cellular electron transfer protein. Involved in the in vivo assembly of the Fe-S clusters in a wide variety of iron-sulfur proteins. (111 aa)
hscADnaK-like molecular chaperone specific for IscU; Chaperone involved in the maturation of iron-sulfur cluster- containing proteins. Has a low intrinsic ATPase activity which is markedly stimulated by HscB. Involved in the maturation of IscU; Belongs to the heat shock protein 70 family. (616 aa)
iscUIron-sulfur cluster assembly scaffold protein; A scaffold on which IscS assembles Fe-S clusters. Exists as 2 interconverting forms, a structured (S) and disordered (D) form. The D- state is the preferred substrate for IscS. Converts to the S-state when an Fe-S cluster is assembled, which helps it dissociate from IscS to transfer the Fe-S to an acceptor. It is likely that Fe-S cluster coordination is flexible as the role of this complex is to build and then hand off Fe-S clusters; Belongs to the NifU family. (128 aa)
iscSCysteine desulfurase (tRNA sulfurtransferase), PLP-dependent; Master enzyme that delivers sulfur to a number of partners involved in Fe-S cluster assembly, tRNA modification or cofactor biosynthesis. Catalyzes the removal of elemental sulfur from cysteine to produce alanine. Functions as a sulfur delivery protein for Fe-S cluster synthesis onto IscU, an Fe-S scaffold assembly protein, as well as other S acceptor proteins. Preferentially binds to disordered IscU on which the Fe-S is assembled, IscU converts to the structured state and then dissociates from IscS to transfer the Fe-S to a [...] (404 aa)
iscRIsc operon transcriptional repressor; Regulates the transcription of several operons and genes involved in the biogenesis of Fe-S clusters and Fe-S-containing proteins. Transcriptional repressor of the iscRSUA operon, which is involved in the assembly of Fe-S clusters into Fe-S proteins. In its apoform, under conditions of oxidative stress or iron deprivation, it activates the suf operon, which is a second operon involved in the assembly of Fe-S clusters. Represses its own transcription as well as that of toxin rnlA. (162 aa)
hypBGTP hydrolase involved in nickel liganding into hydrogenases; Involved in the maturation of [NiFe] hydrogenases. Required for nickel insertion into the metal center of the hydrogenase. Exhibits a low intrinsic GTPase activity, which is essential for nickel insertion. In the presence of GDP, nickel, but not zinc, is transferred from the HypB GTPase domain (G-domain) to HypA. Belongs to the SIMIBI class G3E GTPase family. HypB/HupM subfamily. (290 aa)
csdECsdA-binding activator; Stimulates the cysteine desulfurase activity of CsdA. Contains a cysteine residue (Cys-61) that acts to accept sulfur liberated via the desulfurase activity of CsdA. May be able to transfer sulfur to TcdA/CsdL. Seems to support the function of TcdA in the generation of cyclic threonylcarbamoyladenosine at position 37 (ct(6)A37) in tRNAs that read codons beginning with adenine. Does not appear to participate in Fe/S biogenesis; Belongs to the SufE family. (147 aa)
ygfZIron-sulfur cluster repair protein, plumbagin resistance; Folate-binding protein involved in regulating the level of ATP-DnaA and in the modification of some tRNAs. It is probably a key factor in regulatory networks that act via tRNA modification, such as initiation of chromosomal replication; Belongs to the tRNA-modifying YgfZ family. (326 aa)
nfuAFe/S biogenesis protein, putative scaffold/chaperone protein; Involved in iron-sulfur cluster biogenesis under severe conditions such as iron starvation or oxidative stress. Binds a 4Fe-4S cluster, can transfer this cluster to apoproteins, and thereby intervenes in the maturation of Fe/S proteins. Could also act as a scaffold/chaperone for damaged Fe/S proteins. Required for E.coli to sustain oxidative stress and iron starvation. Also necessary for the use of extracellular DNA as the sole source of carbon and energy. Belongs to the NfuA family. (191 aa)
cyaYIron-dependent inhibitor of iron-sulfur cluster formation; Involved in iron-sulfur (Fe-S) cluster assembly. May act as a regulator of Fe-S biogenesis. Can bind both Fe(2+) and Fe(3+) ions. In vivo, has a positive effect on Fe-S cluster biogenesis under iron- rich growth conditions. In vitro, can inhibit IscS cysteine desulfurase activity and the formation of Fe-S clusters on IscU. In vitro, in the presence of IscS and cysteine, Fe(3+)-CyaY can be used as an iron donor during Fe-S cluster assembly on the scaffold protein IscU. (106 aa)
soxRRedox-sensitive transcriptional activator of soxS; Activates the transcription of the soxS gene which itself controls the superoxide response regulon. SoxR contains a 2Fe-2S iron- sulfur cluster that may act as a redox sensor system that recognizes superoxide. The variable redox state of the Fe-S cluster is employed in vivo to modulate the transcriptional activity of SoxR in response to specific types of oxidative stress. Upon reduction of 2Fe-2S cluster, SoxR reversibly loses its transcriptional activity, but retains its DNA binding affinity. (154 aa)
nsrRNitric oxide-sensitive repressor for NO regulon; Nitric oxide-sensitive repressor of genes involved in protecting the cell against nitrosative stress, such as ytfE, hmpA and ygbA. May require iron for activity. Does not regulates its own transcription. (141 aa)
ytfEIron-sulfur cluster repair protein RIC; Di-iron-containing protein involved in the repair of iron- sulfur clusters damaged by oxidative and nitrosative stress conditions. (220 aa)
ftnAFerritin iron storage protein (cytoplasmic); Iron-storage protein; Belongs to the ferritin family. Prokaryotic subfamily. (165 aa)
sufAFe-S cluster assembly protein. (122 aa)
sufBComponent of SufBCD Fe-S cluster assembly scaffold; The SufBCD complex acts synergistically with SufE to stimulate the cysteine desulfurase activity of SufS. The SufBCD complex contributes to the assembly or repair of oxygen-labile iron-sulfur clusters under oxidative stress. May facilitate iron uptake from extracellular iron chelators under iron limitation. (495 aa)
sufCSufBCD Fe-S cluster assembly scaffold protein, ATP-binding protein; Has low ATPase activity. The SufBCD complex acts synergistically with SufE to stimulate the cysteine desulfurase activity of SufS. The SufBCD complex contributes to the assembly or repair of oxygen-labile iron-sulfur clusters under oxidative stress. May facilitate iron uptake from extracellular iron chelators under iron limitation. (248 aa)
sufDComponent of SufBCD Fe-S cluster assembly scaffold; The SufBCD complex acts synergistically with SufE to stimulate the cysteine desulfurase activity of SufS. The SufBCD complex contributes to the assembly or repair of oxygen-labile iron-sulfur clusters under oxidative stress. May facilitate iron uptake from extracellular iron chelators under iron limitation. Required for the stability of the FhuF protein. (423 aa)
grxDGlutaredoxin-4; Monothiol glutaredoxin involved in the biogenesis of iron- sulfur clusters; Belongs to the glutaredoxin family. Monothiol subfamily. (115 aa)
bioBBiotin synthase; Catalyzes the conversion of dethiobiotin (DTB) to biotin by the insertion of a sulfur atom into dethiobiotin via a radical-based mechanism. (346 aa)
nadAQuinolinate synthase, subunit A; Catalyzes the condensation of iminoaspartate with dihydroxyacetone phosphate to form quinolinate. Belongs to the quinolinate synthase A family. Type 1 subfamily. (347 aa)
miaBtRNA-i(6)A37 methylthiotransferase; Catalyzes the methylthiolation of N6-(dimethylallyl)adenosine (i(6)A), leading to the formation of 2-methylthio-N6- (dimethylallyl)adenosine (ms(2)i(6)A) at position 37 in tRNAs that read codons beginning with uridine. (474 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (24%) [HD]