STRINGSTRING
fdoG fdoG mhpF mhpF pflB pflB maeA maeA pykA pykA ackA ackA pta pta glcB glcB tdcE tdcE mdh mdh aceB aceB aceA aceA acs acs
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
fdoGFormate dehydrogenase-O, large subunit; Allows to use formate as major electron donor during aerobic respiration. Subunit alpha possibly forms the active site; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. (1016 aa)
mhpFacetaldehyde-CoA dehydrogenase II, NAD-binding; Catalyzes the conversion of acetaldehyde to acetyl-CoA, using NAD(+) and coenzyme A. Is the final enzyme in the meta-cleavage pathway for the degradation of 3-phenylpropanoate. Functions as a chaperone protein for folding of MhpE. (316 aa)
pflBFormate acetyltransferase 1; Protein involved in anaerobic respiration and cellular amino acid catabolic process. (760 aa)
maeAMalate dehydrogenase, decarboxylating, NAD-requiring; NAD-linked malate dehydrogenase (malic enzyme); Protein involved in gluconeogenesis. (565 aa)
pykAPyruvate kinase II, glucose stimulated; Protein involved in glycolysis, fermentation and anaerobic respiration. (480 aa)
ackAAcetate kinase A and propionate kinase 2; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. During anaerobic growth of the organism, this enzyme is also involved in the synthesis of most of the ATP formed catabolically; Belongs to the acetokinase family. (400 aa)
ptaPhosphate acetyltransferase; Involved in acetate metabolism. Catalyzes the reversible interconversion of acetyl-CoA and acetyl phosphate. The direction of the overall reaction changes depending on growth conditions. On minimal medium acetyl-CoA is generated. In rich medium acetyl-CoA is converted to acetate and allowing the cell to dump the excess of acetylation potential in exchange for energy in the form of ATP. In the N-terminal section; belongs to the CobB/CobQ family. (714 aa)
glcBMalate synthase G; Involved in the glycolate utilization. Catalyzes the condensation and subsequent hydrolysis of acetyl-coenzyme A (acetyl- CoA) and glyoxylate to form malate and CoA. (723 aa)
tdcEPyruvate formate-lyase 4/2-ketobutyrate formate-lyase; Catalyzes the cleavage of 2-ketobutyrate to propionyl-CoA and formate. It can also use pyruvate as substrate. Belongs to the glycyl radical enzyme (GRE) family. PFL subfamily. (764 aa)
mdhMalate dehydrogenase, NAD(P)-binding; Catalyzes the reversible oxidation of malate to oxaloacetate. (312 aa)
aceBMalate synthase A; Protein involved in glyoxylate cycle. (533 aa)
aceAIsocitrate lyase; Involved in the metabolic adaptation in response to environmental changes. Catalyzes the reversible formation of succinate and glyoxylate from isocitrate, a key step of the glyoxylate cycle, which operates as an anaplerotic route for replenishing the tricarboxylic acid cycle during growth on fatty acid substrates. (434 aa)
acsacetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. Acs undergoes a two-step reaction. In the first half reaction, Acs combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA. (652 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (22%) [HD]