STRINGSTRING
pflB pflB nadB nadB rpoS rpoS metB metB frdA frdA lplA lplA aceA aceA lpd lpd lipA lipA lipB lipB ybfC ybfC ybgO ybgO gltA gltA sdhA sdhA sdhB sdhB sucA sucA sucB sucB mngA mngA mdfA mdfA poxB poxB
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
pflBFormate acetyltransferase 1; Protein involved in anaerobic respiration and cellular amino acid catabolic process. (760 aa)
nadBQuinolinate synthase, L-aspartate oxidase (B protein) subunit; Catalyzes the oxidation of L-aspartate to iminoaspartate. (540 aa)
rpoSRNA polymerase, sigma S (sigma 38) factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the master transcriptional regulator of the stationary phase and the general stress response. Controls, positively or negatively, the expression of several hundred genes, which are mainly involved in metabolism, transport, regulation and stress management. (330 aa)
metBCystathionine gamma-synthase, PLP-dependent; Catalyzes the formation of L-cystathionine from O-succinyl-L- homoserine (OSHS) and L-cysteine, via a gamma-replacement reaction. In the absence of thiol, catalyzes gamma-elimination to form 2- oxobutanoate, succinate and ammonia. (386 aa)
frdAAnaerobic fumarate reductase catalytic and NAD/flavoprotein subunit; Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth. Belongs to the FAD-dependent oxidoreductase 2 family. FRD/SDH subfamily. (602 aa)
lplALipoate-protein ligase A; Catalyzes both the ATP-dependent activation of exogenously supplied lipoate to lipoyl-AMP and the transfer of the activated lipoyl onto the lipoyl domains of lipoate-dependent enzymes. Is also able to catalyze very poorly the transfer of lipoyl and octanoyl moiety from their acyl carrier protein. (338 aa)
aceAIsocitrate lyase; Involved in the metabolic adaptation in response to environmental changes. Catalyzes the reversible formation of succinate and glyoxylate from isocitrate, a key step of the glyoxylate cycle, which operates as an anaplerotic route for replenishing the tricarboxylic acid cycle during growth on fatty acid substrates. (434 aa)
lpdDihydrolipoyl dehydrogenase; Lipoamide dehydrogenase is a component of the glycine cleavage system as well as of the alpha-ketoacid dehydrogenase complexes. (474 aa)
lipALipoate synthase; Catalyzes the radical-mediated insertion of two sulfur atoms into the C-6 and C-8 positions of the octanoyl moiety bound to the lipoyl domains of lipoate-dependent enzymes, thereby converting the octanoylated domains into lipoylated derivatives. Free octanoate is not a substrate for LipA; Belongs to the radical SAM superfamily. Lipoyl synthase family. (321 aa)
lipBOctanoyltransferase; Catalyzes the transfer of endogenously produced octanoic acid from octanoyl-acyl-carrier-protein onto the lipoyl domains of lipoate- dependent enzymes. Lipoyl-ACP can also act as a substrate although octanoyl-ACP is likely to be the physiological substrate. Belongs to the LipB family. (213 aa)
ybfCUncharacterized protein YbfC; Pseudogene, Rhs family. (189 aa)
ybgOPutative fimbrial protein; May be involved in a fimbrial system chaperoned by YbgP and exported by YbgQ. (353 aa)
gltACitrate synthase; Protein involved in tricarboxylic acid cycle and anaerobic respiration; Belongs to the citrate synthase family. (427 aa)
sdhASuccinate dehydrogenase, flavoprotein subunit; Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth. (588 aa)
sdhBSuccinate dehydrogenase, FeS subunit; Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth. (238 aa)
sucA2-oxoglutarate decarboxylase, thiamine triphosphate-binding; E1 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the decarboxylation of 2-oxoglutarate, the first step in the conversion of 2-oxoglutarate to succinyl-CoA and CO(2). (933 aa)
sucBDihydrolipoyltranssuccinase; E2 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the second step in the conversion of 2- oxoglutarate to succinyl-CoA and CO(2). (405 aa)
mngAFused 2-O-a-mannosyl-D-glycerate specific PTS enzymes: IIA component/IIB component/IIC component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in mannosyl- D-glycerate transport. Also involved in thermoinduction of ompC. (658 aa)
mdfAMultidrug efflux system protein; Efflux pump driven by the proton motive force. Confers resistance to a broad spectrum of chemically unrelated drugs. Confers resistance to a diverse group of cationic or zwitterionic lipophilic compounds such as ethidium bromide, tetraphenylphosphonium, rhodamine, daunomycin, benzalkonium, rifampicin, tetracycline, puromycin, and to chemically unrelated, clinically important antibiotics such as chloramphenicol, erythromycin, and certain aminoglycosides and fluoroquinolones. Overexpression results in isopropyl-beta-D- thiogalactopyranoside (IPTG) exclusi [...] (410 aa)
poxBPyruvate dehydrogenase, thiamine triphosphate-binding, FAD-binding; Pyruvate oxidase; Protein involved in carbohydrate catabolic process and pyruvate catabolic process; Belongs to the TPP enzyme family. (572 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (14%) [HD]