Your Input: | |||||
fabZ | (3R)-hydroxymyristol acyl carrier protein dehydratase; Involved in unsaturated fatty acids biosynthesis. Catalyzes the dehydration of short chain beta-hydroxyacyl-ACPs and long chain saturated and unsaturated beta-hydroxyacyl-ACPs. (151 aa) | ||||
fabI | Enoyl-[acyl-carrier-protein] reductase, NADH-dependent; Catalyzes the reduction of a carbon-carbon double bond in an enoyl moiety that is covalently linked to an acyl carrier protein (ACP). Involved in the elongation cycle of fatty acid which are used in the lipid metabolism and in the biotin biosynthesis. (262 aa) | ||||
fadR | Fatty acid metabolism regulon transcriptional regulator; Multifunctional regulator of fatty acid metabolism. Represses transcription of at least eight genes required for fatty acid transport and beta-oxidation including fadA, fadB, fadD, fadL and fadE. Activates transcription of at least three genes required for unsaturated fatty acid biosynthesis: fabA, fabB and iclR, the gene encoding the transcriptional regulator of the aceBAK operon encoding the glyoxylate shunt enzymes. (239 aa) | ||||
fabF | 3-oxoacyl-[acyl-carrier-protein] synthase II; Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP. Has a preference for short chain acid substrates and may function to supply the octanoic substrates for lipoic acid biosynthesis. (413 aa) | ||||
fabH | 3-oxoacyl-[acyl-carrier-protein] synthase III; Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP. Catalyzes the first condensation reaction which initiates fatty acid synthesis and may therefore play a role in governing the total rate of fatty acid production. Possesses both acetoacetyl-ACP synthase and acetyl transacylase activities. Has some substrate specificity for acetyl-CoA. Its substrate specificity determines the biosynthesis of straight-chain of fatty acids instead of branched-chain; Belongs to the t [...] (317 aa) | ||||
plsX | Putative phosphate acyltransferase; Catalyzes the reversible formation of acyl-phosphate (acyl- PO(4)) from acyl-[acyl-carrier-protein] (acyl-ACP). This enzyme utilizes acyl-ACP as fatty acyl donor, but not acyl-CoA. (356 aa) | ||||
fabA | Beta-hydroxydecanoyl thioester dehydrase; Necessary for the introduction of cis unsaturation into fatty acids. Catalyzes the dehydration of (3R)-3-hydroxydecanoyl-ACP to E- (2)-decenoyl-ACP and then its isomerization to Z-(3)-decenoyl-ACP. Can catalyze the dehydratase reaction for beta-hydroxyacyl-ACPs with saturated chain lengths up to 16:0, being most active on intermediate chain length. Is inactive in the dehydration of long chain unsaturated beta-hydroxyacyl-ACP. (172 aa) | ||||
smtA | Putative S-adenosyl-L-methionine-dependent methyltransferase; Catalyzes the methylation of 5-carboxymethoxyuridine (cmo5U) to form 5-methoxycarbonylmethoxyuridine (mcmo5U) at position 34 in tRNAs. Four tRNAs (tRNA(Ala1), tRNA(Ser1), tRNA(Pro3) and tRNA(Thr4)) are fully modified with mcmo5U in stationary-phase E.coli. Also present at low frequency in tRNA(Leu3) and tRNA(Val1). (261 aa) | ||||
bioC | malonyl-ACP O-methyltransferase, SAM-dependent; Converts the free carboxyl group of a malonyl-thioester to its methyl ester by transfer of a methyl group from S-adenosyl-L- methionine (SAM). It allows to synthesize pimeloyl-ACP via the fatty acid synthetic pathway. E.coli employs a methylation and demethylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes. (251 aa) | ||||
sucC | succinyl-CoA synthetase, beta subunit; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The beta subunit provides nucleotide specificity of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A and phosphate are found in the alpha subunit. Can use either ATP or GTP, but prefers ATP. It can also function in the other direction for anabolic purposes, and this may be particularly impor [...] (388 aa) | ||||
lipB | Octanoyltransferase; Catalyzes the transfer of endogenously produced octanoic acid from octanoyl-acyl-carrier-protein onto the lipoyl domains of lipoate- dependent enzymes. Lipoyl-ACP can also act as a substrate although octanoyl-ACP is likely to be the physiological substrate. Belongs to the LipB family. (213 aa) | ||||
lipA | Lipoate synthase; Catalyzes the radical-mediated insertion of two sulfur atoms into the C-6 and C-8 positions of the octanoyl moiety bound to the lipoyl domains of lipoate-dependent enzymes, thereby converting the octanoylated domains into lipoylated derivatives. Free octanoate is not a substrate for LipA; Belongs to the radical SAM superfamily. Lipoyl synthase family. (321 aa) | ||||
entD | Phosphopantetheinyltransferase component of enterobactin synthase multienzyme complex; Involved in the biosynthesis of the siderophore enterobactin (enterochelin), which is a macrocyclic trimeric lactone of N-(2,3- dihydroxybenzoyl)-serine. The serine trilactone serves as a scaffolding for the three catechol functionalities that provide hexadentate coordination for the tightly ligated iron(2+) atoms. Plays an essential role in the assembly of the enterobactin by catalyzing the transfer of the 4'-phosphopantetheine (Ppant) moiety from coenzyme A to the apo- domains of both EntB (ArCP do [...] (206 aa) | ||||
tesA | acyl-CoA thioesterase 1 and protease I and lysophospholipase L1; TesA is a multifunctional esterase that can act as a thioesterase, lysophospholipase and protease. TesA functions as a thioesterase specific for fatty acyl thioesters of greater than ten carbons, with highest activity on palmitoyl-CoA, cis-vaccenyl-CoA and palmitoleoyl-CoA. TesA also possesses an arylesterase activity towards short acyl-chain aromatic esters such as alpha-naphthyl acetate, alpha-naphthyl butyrate, benzyl acetate and phenyl acetate. Also able to hydrolyze short acyl-chain triacylglycerols such as triacetin [...] (208 aa) | ||||
tesB | acyl-CoA thioesterase 2; Can hydrolyze a broad range of acyl-CoA thioesters. Its physiological function is not known; Belongs to the C/M/P thioester hydrolase family. (286 aa) | ||||
fadM | Long-chain acyl-CoA thioesterase III; Long-chain acyl-CoA thioesterase with a preference for 3,5- tetradecadienoyl-CoA. Could be involved in beta-oxidation of fatty acids; Belongs to the 4-hydroxybenzoyl-CoA thioesterase family. (132 aa) | ||||
acpH | Acyl carrier protein (ACP) phosphodiesterase; Converts holo-ACP to apo-ACP by hydrolytic cleavage of the phosphopantetheine prosthetic group from ACP; Belongs to the AcpH family. (193 aa) | ||||
fadE | Acyl coenzyme A dehydrogenase; Catalyzes the dehydrogenation of acyl-coenzymes A (acyl-CoAs) to 2-enoyl-CoAs, the first step of the beta-oxidation cycle of fatty acid degradation. Is required for E.coli to utilize dodecanoate or oleate as the sole carbon and energy source for growth. (814 aa) | ||||
plsB | Glycerol-3-phosphate O-acyltransferase; Catalyzes the transfer of an acyl group from acyl-ACP to glycerol-3-phosphate (G3P) to form lysophosphatidic acid (LPA). This enzyme can utilize either acyl-CoA or acyl-ACP as the fatty acyl donor. Belongs to the GPAT/DAPAT family. (807 aa) | ||||
fabR | Transcriptional repressor of fabA and fabB; Binds the promoter region of at least fabA and fabB, but probably not yqfA. Represses the transcription of fabA and fabB, involved in unsaturated fatty acid (UFA) biosynthesis. By controlling UFA production, FabR directly influences the physical properties of the membrane bilayer. (215 aa) | ||||
tpiA | Triosephosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (255 aa) | ||||
fadB | Enoyl-CoA hydratase/Delta(3)-cis-Delta(2)-trans-enoyl-CoA isomerase/3-hydroxybutyryl-CoA epimerase; Involved in the aerobic and anaerobic degradation of long- chain fatty acids via beta-oxidation cycle. Catalyzes the formation of 3-oxoacyl-CoA from enoyl-CoA via L-3-hydroxyacyl-CoA. It can also use D-3-hydroxyacyl-CoA and cis-3-enoyl-CoA as substrate. In the C-terminal section; belongs to the 3-hydroxyacyl-CoA dehydrogenase family. (729 aa) | ||||
fadA | 3-ketoacyl-CoA thiolase (thiolase I); Catalyzes the final step of fatty acid oxidation in which acetyl-CoA is released and the CoA ester of a fatty acid two carbons shorter is formed. Involved in the aerobic and anaerobic degradation of long-chain fatty acids. (387 aa) | ||||
acpT | 4'-phosphopantetheinyl transferase; May be involved in an alternative pathway for phosphopantetheinyl transfer and holo-ACP synthesis in E.coli. The native apo-protein substrate is unknown. Is able to functionally replace AcpS in vivo but only when expressed at high levels. Belongs to the P-Pant transferase superfamily. Gsp/Sfp/HetI/AcpT family. (195 aa) | ||||
bioH | pimeloyl-ACP methyl ester carboxylesterase; The physiological role of BioH is to remove the methyl group introduced by BioC when the pimeloyl moiety is complete. It allows to synthesize pimeloyl-ACP via the fatty acid synthetic pathway through the hydrolysis of the ester bonds of pimeloyl-ACP esters. E.coli employs a methylation and demethylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes. BioH shows a preference for short chain fatty acid esters (acyl chain length of up to 6 carbons) and short chain [...] (256 aa) | ||||
accB | Biotin carboxyl carrier protein of acetyl-CoA carboxylase; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (156 aa) | ||||
fadH | 2,4-dienoyl-CoA reductase, NADH and FMN-linked; Functions as an auxiliary enzyme in the beta-oxidation of unsaturated fatty acids with double bonds at even carbon positions. Catalyzes the NADPH-dependent reduction of the C4-C5 double bond of the acyl chain of 2,4-dienoyl-CoA to yield 2-trans-enoyl-CoA. Acts on both isomers, 2-trans,4- cis- and 2-trans,4-trans-decadienoyl-CoA, with almost equal efficiency. Is not active with NADH instead of NADPH. Does not show cis->trans isomerase activity. (672 aa) | ||||
plsY | Putative glycerol-3-phosphate acyltransferase; Catalyzes the transfer of an acyl group from acyl-ACP to glycerol-3-phosphate (G3P) to form lysophosphatidic acid (LPA). This enzyme can also utilize acyl-CoA as fatty acyl donor, but not acyl- PO(4) (Probable); Belongs to the PlsY family. (205 aa) | ||||
aas | Fused 2-acylglycerophospho-ethanolamine acyl transferase/acyl-acyl carrier protein synthetase; Plays a role in lysophospholipid acylation. Transfers fatty acids to the 1-position via an enzyme-bound acyl-ACP intermediate in the presence of ATP and magnesium. Its physiological function is to regenerate phosphatidylethanolamine from 2-acyl-glycero-3- phosphoethanolamine (2-acyl-GPE) formed by transacylation reactions or degradation by phospholipase A1. (719 aa) | ||||
fadL | Long-chain fatty acid outer membrane transporter; Involved in translocation of long-chain fatty acids across the outer membrane. It is a receptor for the bacteriophage T2. FadL may form a specific channel; Belongs to the OmpP1/FadL family. (446 aa) | ||||
fabB | 3-oxoacyl-[acyl-carrier-protein] synthase I; Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP. Specific for elongation from C-10 to unsaturated C-16 and C-18 fatty acids; Belongs to the thiolase-like superfamily. Beta-ketoacyl-ACP synthases family. (406 aa) | ||||
fadD | acyl-CoA synthetase (long-chain-fatty-acid--CoA ligase); Catalyzes the esterification, concomitant with transport, of exogenous long-chain fatty acids into metabolically active CoA thioesters for subsequent degradation or incorporation into phospholipids. Activity is the highest with fatty acid substrates of > 10 carbon atoms. Is involved in the aerobic beta- oxidative degradation of fatty acids, which allows aerobic growth of E.coli on fatty acids as a sole carbon and energy source. (561 aa) |