STRINGSTRING
rsmA rsmA dksA dksA gmhB gmhB gmhA gmhA pgpA pgpA ppiD ppiD rssB rssB zwf zwf lpxM lpxM rcsD rcsD waaC waaC waaP waaP waaG waaG atpC atpC atpI atpI atpF atpF metL metL dnaK dnaK
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
rsmA16S rRNA m(6)A1518, m(6)A1519 dimethyltransferase, SAM-dependent; Specifically dimethylates two adjacent adenosines (A1518 and A1519) in the loop of a conserved hairpin near the 3'-end of 16S rRNA in the 30S particle. May play a critical role in biogenesis of 30S subunits. Has also a DNA glycosylase/AP lyase activity that removes C mispaired with oxidized T from DNA, and may play a role in protection of DNA against oxidative stress. (273 aa)
dksATranscriptional regulator of rRNA transcription; Transcription factor that acts by binding directly to the RNA polymerase (RNAP). Required for negative regulation of rRNA expression and positive regulation of several amino acid biosynthesis promoters. Also required for regulation of fis expression. Binding to RNAP disrupts interaction of RNAP with DNA, inhibits formation of initiation complexes, and amplifies effects of ppGpp and the initiating NTP on rRNA transcription. Inhibits transcript elongation, exonucleolytic RNA cleavage and pyrophosphorolysis, and increases intrinsic terminat [...] (151 aa)
gmhBD,D-heptose 1,7-bisphosphate phosphatase; Converts the D-glycero-beta-D-manno-heptose 1,7-bisphosphate (beta-HBP) intermediate into D-glycero-beta-D-manno-heptose 1-phosphate by removing the phosphate group at the C-7 position. (191 aa)
gmhAD-sedoheptulose 7-phosphate isomerase; Catalyzes the isomerization of sedoheptulose 7-phosphate in D-glycero-D-manno-heptose 7-phosphate; Belongs to the SIS family. GmhA subfamily. (192 aa)
pgpAPhosphatidylglycerophosphatase A; Lipid phosphatase which dephosphorylates phosphatidylglycerophosphate (PGP) to phosphatidylglycerol (PG). (172 aa)
ppiDPeriplasmic folding chaperone, has an inactive PPIase domain; PPIases accelerate the folding of proteins. Seems to be involved in the folding of outer membrane proteins. Its preference at the P1 position of the peptide substrate is Glu > Leu > Ala > His > Val > Phe > Ile > Gly > Lys > Thr. (623 aa)
rssBPcnB-degradosome interaction factor; Regulates the turnover of the sigma S factor (RpoS) by promoting its proteolysis in exponentially growing cells. Acts by binding and delivering RpoS to the ClpXP protease. RssB is not co- degraded with RpoS, but is released from the complex and can initiate a new cycle of RpoS recognition and degradation. In stationary phase, could also act as an anti-sigma factor and reduce the ability of RpoS to activate gene expression. Is also involved in the regulation of the mRNA polyadenylation pathway during stationary phase, probably by maintaining the asso [...] (337 aa)
zwfGlucose-6-phosphate 1-dehydrogenase; Catalyzes the oxidation of glucose 6-phosphate to 6- phosphogluconolactone; Belongs to the glucose-6-phosphate dehydrogenase family. (491 aa)
lpxMMyristoyl-acyl carrier protein (ACP)-dependent acyltransferase; Catalyzes the transfer of myristate from myristoyl-acyl carrier protein (ACP) to Kdo(2)-(lauroyl)-lipid IV(A) to form Kdo(2)- lipid A. Can probably also catalyze the transfer of myristate to Kdo(2)-(palmitoleoyl)-lipid IV(A) to form the cold-adapted Kdo(2)-lipid A. In vitro, can acylate Kdo(2)-lipid IV(A), but acylation of (KDO)2- (lauroyl)-lipid IV(A) is about 100 times faster. In vitro, can use lauroyl-ACP but displays a slight kinetic preference for myristoyl-ACP. (323 aa)
rcsDPhosphotransfer intermediate protein in two-component regulatory system with RcsBC; Component of the Rcs signaling system, which controls transcription of numerous genes. RcsD is a phosphotransfer intermediate between the sensor kinase RcsC and the response regulator RcsB. It acquires a phosphoryl group from RcsC and transfers it to RcsB. The system controls expression of genes involved in colanic acid capsule synthesis, biofilm formation and cell division. (890 aa)
waaCADP-heptose:LPS heptosyl transferase I; Heptose transfer to the lipopolysaccharide core. It transfers the innermost heptose to [4'-P](3-deoxy-D-manno-octulosonic acid)2-IVA; Belongs to the glycosyltransferase 9 family. (319 aa)
waaPKinase that phosphorylates core heptose of lipopolysaccharide; Catalyzes the phosphorylation of heptose(I) of the outer membrane lipopolysaccharide core. (265 aa)
waaGUDP-glucose:(heptosyl)lipopolysaccharide alpha-1,3-glucosyltransferase; Involved in the addition of the first glucose residue to the lipopolysaccharide core; Belongs to the glycosyltransferase group 1 family. Glycosyltransferase 4 subfamily. (374 aa)
atpCF1 sector of membrane-bound ATP synthase, epsilon subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane; Belongs to the ATPase epsilon chain family. (139 aa)
atpIATP synthase, membrane-bound accessory factor; A possible function for this protein is to guide the assembly of the membrane sector of the ATPase enzyme complex; Belongs to the bacterial AtpI family. (126 aa)
atpFF0 sector of membrane-bound ATP synthase, subunit b; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (156 aa)
metLBifunctional aspartokinase/homoserine dehydrogenase 2; Aspartokinase II and homoserine dehydrogenase II; Protein involved in methionine biosynthetic process and homoserine biosynthetic process. (810 aa)
dnaKChaperone Hsp70, with co-chaperone DnaJ; Plays an essential role in the initiation of phage lambda DNA replication, where it acts in an ATP-dependent fashion with the DnaJ protein to release lambda O and P proteins from the preprimosomal complex. DnaK is also involved in chromosomal DNA replication, possibly through an analogous interaction with the DnaA protein. Also participates actively in the response to hyperosmotic shock. (638 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (18%) [HD]