node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
accB | bioA | b3255 | b0774 | Biotin carboxyl carrier protein of acetyl-CoA carboxylase; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. | 7,8-diaminopelargonic acid synthase, PLP-dependent; Catalyzes the transfer of the alpha-amino group from S- adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form 7,8-diaminopelargonic acid (DAPA). It is the only animotransferase known to utilize SAM as an amino donor; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. BioA subfamily. | 0.412 |
accB | bioF | b3255 | b0776 | Biotin carboxyl carrier protein of acetyl-CoA carboxylase; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. | 8-amino-7-oxononanoate synthase; Catalyzes the decarboxylative condensation of pimeloyl-[acyl- carrier protein] and L-alanine to produce 8-amino-7-oxononanoate (AON), [acyl-carrier protein], and carbon dioxide. Can also use pimeloyl-CoA instead of pimeloyl-ACP as substrate, but it is believed that pimeloyl- ACP rather than pimeloyl-CoA is the physiological substrate of BioF. Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. BioF subfamily. | 0.555 |
accB | birA | b3255 | b3973 | Biotin carboxyl carrier protein of acetyl-CoA carboxylase; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. | Bifunctional ligase/repressor BirA; Acts both as a biotin--[acetyl-CoA-carboxylase] ligase and a biotin-operon repressor. In the presence of ATP, BirA activates biotin to form the BirA-biotinyl-5'-adenylate (BirA-bio-5'-AMP or holoBirA) complex. HoloBirA can either transfer the biotinyl moiety to the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase, or bind to the biotin operator site and inhibit transcription of the operon. | 0.988 |
bioA | accB | b0774 | b3255 | 7,8-diaminopelargonic acid synthase, PLP-dependent; Catalyzes the transfer of the alpha-amino group from S- adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form 7,8-diaminopelargonic acid (DAPA). It is the only animotransferase known to utilize SAM as an amino donor; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. BioA subfamily. | Biotin carboxyl carrier protein of acetyl-CoA carboxylase; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. | 0.412 |
bioA | bioB | b0774 | b0775 | 7,8-diaminopelargonic acid synthase, PLP-dependent; Catalyzes the transfer of the alpha-amino group from S- adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form 7,8-diaminopelargonic acid (DAPA). It is the only animotransferase known to utilize SAM as an amino donor; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. BioA subfamily. | Biotin synthase; Catalyzes the conversion of dethiobiotin (DTB) to biotin by the insertion of a sulfur atom into dethiobiotin via a radical-based mechanism. | 0.999 |
bioA | bioC | b0774 | b0777 | 7,8-diaminopelargonic acid synthase, PLP-dependent; Catalyzes the transfer of the alpha-amino group from S- adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form 7,8-diaminopelargonic acid (DAPA). It is the only animotransferase known to utilize SAM as an amino donor; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. BioA subfamily. | malonyl-ACP O-methyltransferase, SAM-dependent; Converts the free carboxyl group of a malonyl-thioester to its methyl ester by transfer of a methyl group from S-adenosyl-L- methionine (SAM). It allows to synthesize pimeloyl-ACP via the fatty acid synthetic pathway. E.coli employs a methylation and demethylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes. | 0.987 |
bioA | bioD | b0774 | b0778 | 7,8-diaminopelargonic acid synthase, PLP-dependent; Catalyzes the transfer of the alpha-amino group from S- adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form 7,8-diaminopelargonic acid (DAPA). It is the only animotransferase known to utilize SAM as an amino donor; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. BioA subfamily. | Dethiobiotin synthetase; Catalyzes a mechanistically unusual reaction, the ATP- dependent insertion of CO2 between the N7 and N8 nitrogen atoms of 7,8- diaminopelargonic acid (DAPA) to form an ureido ring. Only CTP can partially replace ATP while diaminobiotin is only 37% as effective as 7,8-diaminopelargonic acid; Belongs to the dethiobiotin synthetase family. | 0.999 |
bioA | bioF | b0774 | b0776 | 7,8-diaminopelargonic acid synthase, PLP-dependent; Catalyzes the transfer of the alpha-amino group from S- adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form 7,8-diaminopelargonic acid (DAPA). It is the only animotransferase known to utilize SAM as an amino donor; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. BioA subfamily. | 8-amino-7-oxononanoate synthase; Catalyzes the decarboxylative condensation of pimeloyl-[acyl- carrier protein] and L-alanine to produce 8-amino-7-oxononanoate (AON), [acyl-carrier protein], and carbon dioxide. Can also use pimeloyl-CoA instead of pimeloyl-ACP as substrate, but it is believed that pimeloyl- ACP rather than pimeloyl-CoA is the physiological substrate of BioF. Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. BioF subfamily. | 0.999 |
bioA | birA | b0774 | b3973 | 7,8-diaminopelargonic acid synthase, PLP-dependent; Catalyzes the transfer of the alpha-amino group from S- adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form 7,8-diaminopelargonic acid (DAPA). It is the only animotransferase known to utilize SAM as an amino donor; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. BioA subfamily. | Bifunctional ligase/repressor BirA; Acts both as a biotin--[acetyl-CoA-carboxylase] ligase and a biotin-operon repressor. In the presence of ATP, BirA activates biotin to form the BirA-biotinyl-5'-adenylate (BirA-bio-5'-AMP or holoBirA) complex. HoloBirA can either transfer the biotinyl moiety to the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase, or bind to the biotin operator site and inhibit transcription of the operon. | 0.888 |
bioA | yigM | b0774 | b3827 | 7,8-diaminopelargonic acid synthase, PLP-dependent; Catalyzes the transfer of the alpha-amino group from S- adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form 7,8-diaminopelargonic acid (DAPA). It is the only animotransferase known to utilize SAM as an amino donor; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. BioA subfamily. | Putative inner membrane EamA-like transporter; Uptake of biotin. Acts probably by facilitated diffusion. Belongs to the drug/metabolite transporter (DMT) superfamily. 10 TMS drug/metabolite exporter (DME) (TC 2.A.7.3) family. | 0.519 |
bioB | bioA | b0775 | b0774 | Biotin synthase; Catalyzes the conversion of dethiobiotin (DTB) to biotin by the insertion of a sulfur atom into dethiobiotin via a radical-based mechanism. | 7,8-diaminopelargonic acid synthase, PLP-dependent; Catalyzes the transfer of the alpha-amino group from S- adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form 7,8-diaminopelargonic acid (DAPA). It is the only animotransferase known to utilize SAM as an amino donor; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. BioA subfamily. | 0.999 |
bioB | bioC | b0775 | b0777 | Biotin synthase; Catalyzes the conversion of dethiobiotin (DTB) to biotin by the insertion of a sulfur atom into dethiobiotin via a radical-based mechanism. | malonyl-ACP O-methyltransferase, SAM-dependent; Converts the free carboxyl group of a malonyl-thioester to its methyl ester by transfer of a methyl group from S-adenosyl-L- methionine (SAM). It allows to synthesize pimeloyl-ACP via the fatty acid synthetic pathway. E.coli employs a methylation and demethylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes. | 0.998 |
bioB | bioD | b0775 | b0778 | Biotin synthase; Catalyzes the conversion of dethiobiotin (DTB) to biotin by the insertion of a sulfur atom into dethiobiotin via a radical-based mechanism. | Dethiobiotin synthetase; Catalyzes a mechanistically unusual reaction, the ATP- dependent insertion of CO2 between the N7 and N8 nitrogen atoms of 7,8- diaminopelargonic acid (DAPA) to form an ureido ring. Only CTP can partially replace ATP while diaminobiotin is only 37% as effective as 7,8-diaminopelargonic acid; Belongs to the dethiobiotin synthetase family. | 0.999 |
bioB | bioF | b0775 | b0776 | Biotin synthase; Catalyzes the conversion of dethiobiotin (DTB) to biotin by the insertion of a sulfur atom into dethiobiotin via a radical-based mechanism. | 8-amino-7-oxononanoate synthase; Catalyzes the decarboxylative condensation of pimeloyl-[acyl- carrier protein] and L-alanine to produce 8-amino-7-oxononanoate (AON), [acyl-carrier protein], and carbon dioxide. Can also use pimeloyl-CoA instead of pimeloyl-ACP as substrate, but it is believed that pimeloyl- ACP rather than pimeloyl-CoA is the physiological substrate of BioF. Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. BioF subfamily. | 0.999 |
bioB | birA | b0775 | b3973 | Biotin synthase; Catalyzes the conversion of dethiobiotin (DTB) to biotin by the insertion of a sulfur atom into dethiobiotin via a radical-based mechanism. | Bifunctional ligase/repressor BirA; Acts both as a biotin--[acetyl-CoA-carboxylase] ligase and a biotin-operon repressor. In the presence of ATP, BirA activates biotin to form the BirA-biotinyl-5'-adenylate (BirA-bio-5'-AMP or holoBirA) complex. HoloBirA can either transfer the biotinyl moiety to the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase, or bind to the biotin operator site and inhibit transcription of the operon. | 0.978 |
bioC | bioA | b0777 | b0774 | malonyl-ACP O-methyltransferase, SAM-dependent; Converts the free carboxyl group of a malonyl-thioester to its methyl ester by transfer of a methyl group from S-adenosyl-L- methionine (SAM). It allows to synthesize pimeloyl-ACP via the fatty acid synthetic pathway. E.coli employs a methylation and demethylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes. | 7,8-diaminopelargonic acid synthase, PLP-dependent; Catalyzes the transfer of the alpha-amino group from S- adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form 7,8-diaminopelargonic acid (DAPA). It is the only animotransferase known to utilize SAM as an amino donor; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. BioA subfamily. | 0.987 |
bioC | bioB | b0777 | b0775 | malonyl-ACP O-methyltransferase, SAM-dependent; Converts the free carboxyl group of a malonyl-thioester to its methyl ester by transfer of a methyl group from S-adenosyl-L- methionine (SAM). It allows to synthesize pimeloyl-ACP via the fatty acid synthetic pathway. E.coli employs a methylation and demethylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes. | Biotin synthase; Catalyzes the conversion of dethiobiotin (DTB) to biotin by the insertion of a sulfur atom into dethiobiotin via a radical-based mechanism. | 0.998 |
bioC | bioD | b0777 | b0778 | malonyl-ACP O-methyltransferase, SAM-dependent; Converts the free carboxyl group of a malonyl-thioester to its methyl ester by transfer of a methyl group from S-adenosyl-L- methionine (SAM). It allows to synthesize pimeloyl-ACP via the fatty acid synthetic pathway. E.coli employs a methylation and demethylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes. | Dethiobiotin synthetase; Catalyzes a mechanistically unusual reaction, the ATP- dependent insertion of CO2 between the N7 and N8 nitrogen atoms of 7,8- diaminopelargonic acid (DAPA) to form an ureido ring. Only CTP can partially replace ATP while diaminobiotin is only 37% as effective as 7,8-diaminopelargonic acid; Belongs to the dethiobiotin synthetase family. | 0.999 |
bioC | bioF | b0777 | b0776 | malonyl-ACP O-methyltransferase, SAM-dependent; Converts the free carboxyl group of a malonyl-thioester to its methyl ester by transfer of a methyl group from S-adenosyl-L- methionine (SAM). It allows to synthesize pimeloyl-ACP via the fatty acid synthetic pathway. E.coli employs a methylation and demethylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes. | 8-amino-7-oxononanoate synthase; Catalyzes the decarboxylative condensation of pimeloyl-[acyl- carrier protein] and L-alanine to produce 8-amino-7-oxononanoate (AON), [acyl-carrier protein], and carbon dioxide. Can also use pimeloyl-CoA instead of pimeloyl-ACP as substrate, but it is believed that pimeloyl- ACP rather than pimeloyl-CoA is the physiological substrate of BioF. Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. BioF subfamily. | 0.999 |
bioC | birA | b0777 | b3973 | malonyl-ACP O-methyltransferase, SAM-dependent; Converts the free carboxyl group of a malonyl-thioester to its methyl ester by transfer of a methyl group from S-adenosyl-L- methionine (SAM). It allows to synthesize pimeloyl-ACP via the fatty acid synthetic pathway. E.coli employs a methylation and demethylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes. | Bifunctional ligase/repressor BirA; Acts both as a biotin--[acetyl-CoA-carboxylase] ligase and a biotin-operon repressor. In the presence of ATP, BirA activates biotin to form the BirA-biotinyl-5'-adenylate (BirA-bio-5'-AMP or holoBirA) complex. HoloBirA can either transfer the biotinyl moiety to the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase, or bind to the biotin operator site and inhibit transcription of the operon. | 0.841 |