STRINGSTRING
oxyR oxyR soxR soxR modF modF tonB tonB sufD sufD sufC sufC sufA sufA znuA znuA fliS fliS iscA iscA iscU iscU iscS iscS iscR iscR rpoE rpoE bfr bfr rpoZ rpoZ
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
oxyROxidative and nitrosative stress transcriptional regulator; Hydrogen peroxide sensor. Activates the expression of a regulon of hydrogen peroxide-inducible genes such as katG, gor, ahpC, ahpF, oxyS (a regulatory RNA), dps, fur and grxA. OxyR expression is negatively autoregulated by binding to a 43 bp region upstream of its own coding sequence. OxyR is inactivated by reduction of its essential disulfide bond by the product of GrxA, itself positively regulated by OxyR. Has also a positive regulatory effect on the production of surface proteins that control the colony morphology and auto- [...] (305 aa)
soxRRedox-sensitive transcriptional activator of soxS; Activates the transcription of the soxS gene which itself controls the superoxide response regulon. SoxR contains a 2Fe-2S iron- sulfur cluster that may act as a redox sensor system that recognizes superoxide. The variable redox state of the Fe-S cluster is employed in vivo to modulate the transcriptional activity of SoxR in response to specific types of oxidative stress. Upon reduction of 2Fe-2S cluster, SoxR reversibly loses its transcriptional activity, but retains its DNA binding affinity. (154 aa)
modFMolybdate ABC transporter ATPase; Probably not involved in the transport of molybdenum into the cell; Belongs to the ABC transporter superfamily. (490 aa)
tonBMembrane spanning protein in TonB-ExbB-ExbD transport complex; Interacts with outer membrane receptor proteins that carry out high-affinity binding and energy dependent uptake into the periplasmic space of specific substrates such as cobalamin, and various iron compounds (such as iron dicitrate, enterochelin, aerobactin, etc.). In the absence of TonB these receptors bind their substrates but do not carry out active transport. TonB also interacts with some colicins and is involved in the energy-dependent, irreversible steps of bacteriophages phi 80 and T1 infection. It could act to tran [...] (239 aa)
sufDComponent of SufBCD Fe-S cluster assembly scaffold; The SufBCD complex acts synergistically with SufE to stimulate the cysteine desulfurase activity of SufS. The SufBCD complex contributes to the assembly or repair of oxygen-labile iron-sulfur clusters under oxidative stress. May facilitate iron uptake from extracellular iron chelators under iron limitation. Required for the stability of the FhuF protein. (423 aa)
sufCSufBCD Fe-S cluster assembly scaffold protein, ATP-binding protein; Has low ATPase activity. The SufBCD complex acts synergistically with SufE to stimulate the cysteine desulfurase activity of SufS. The SufBCD complex contributes to the assembly or repair of oxygen-labile iron-sulfur clusters under oxidative stress. May facilitate iron uptake from extracellular iron chelators under iron limitation. (248 aa)
sufAFe-S cluster assembly protein. (122 aa)
znuAZinc ABC transporter periplasmic binding protein; Involved in the high-affinity zinc uptake transport system. (310 aa)
fliSFlagellar biosynthesis; repressor of class 3a and 3b operons (RflA activity); Protein involved in flagellum assembly and taxis. (136 aa)
iscAFeS cluster assembly protein; Is able to transfer iron-sulfur clusters to apo-ferredoxin. Multiple cycles of [2Fe2S] cluster formation and transfer are observed, suggesting that IscA acts catalytically. Recruits intracellular free iron so as to provide iron for the assembly of transient iron-sulfur cluster in IscU in the presence of IscS, L-cysteine and the thioredoxin reductase system TrxA/TrxB; Belongs to the HesB/IscA family. (107 aa)
iscUIron-sulfur cluster assembly scaffold protein; A scaffold on which IscS assembles Fe-S clusters. Exists as 2 interconverting forms, a structured (S) and disordered (D) form. The D- state is the preferred substrate for IscS. Converts to the S-state when an Fe-S cluster is assembled, which helps it dissociate from IscS to transfer the Fe-S to an acceptor. It is likely that Fe-S cluster coordination is flexible as the role of this complex is to build and then hand off Fe-S clusters; Belongs to the NifU family. (128 aa)
iscSCysteine desulfurase (tRNA sulfurtransferase), PLP-dependent; Master enzyme that delivers sulfur to a number of partners involved in Fe-S cluster assembly, tRNA modification or cofactor biosynthesis. Catalyzes the removal of elemental sulfur from cysteine to produce alanine. Functions as a sulfur delivery protein for Fe-S cluster synthesis onto IscU, an Fe-S scaffold assembly protein, as well as other S acceptor proteins. Preferentially binds to disordered IscU on which the Fe-S is assembled, IscU converts to the structured state and then dissociates from IscS to transfer the Fe-S to a [...] (404 aa)
iscRIsc operon transcriptional repressor; Regulates the transcription of several operons and genes involved in the biogenesis of Fe-S clusters and Fe-S-containing proteins. Transcriptional repressor of the iscRSUA operon, which is involved in the assembly of Fe-S clusters into Fe-S proteins. In its apoform, under conditions of oxidative stress or iron deprivation, it activates the suf operon, which is a second operon involved in the assembly of Fe-S clusters. Represses its own transcription as well as that of toxin rnlA. (162 aa)
rpoERNA polymerase sigma E factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase (RNAP) to specific initiation sites and are then released. Extracytoplasmic function (ECF) sigma-E controls the envelope stress response, responding to periplasmic protein stress, increased levels of periplasmic lipopolysaccharide (LPS) as well as heat shock and oxidative stress; it controls protein processing in the extracytoplasmic compartment. The 90 member regulon consists of the genes necessary for the synthesis and maintenance of both proteins and LPS of the outer me [...] (191 aa)
bfrBacterioferritin, iron storage and detoxification protein; Iron-storage protein, whose ferroxidase center binds Fe(2+) ions, oxidizes them by dioxygen to Fe(3+), and participates in the subsequent Fe(3+) oxide mineral core formation within the central cavity of the protein complex. The mineralized iron core can contain as many as 2700 iron atoms/24-meric molecule. (158 aa)
rpoZRNA polymerase, omega subunit; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits. (91 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (14%) [HD]