Your Input: | |||||
pdhR | Pyruvate dehydrogenase complex repressor; Transcriptional repressor for the pyruvate dehydrogenase complex genes aceEF and lpd. (254 aa) | ||||
accB | Biotin carboxyl carrier protein of acetyl-CoA carboxylase; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (156 aa) | ||||
accC | acetyl-CoA carboxylase, biotin carboxylase subunit; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (449 aa) | ||||
bioH | pimeloyl-ACP methyl ester carboxylesterase; The physiological role of BioH is to remove the methyl group introduced by BioC when the pimeloyl moiety is complete. It allows to synthesize pimeloyl-ACP via the fatty acid synthetic pathway through the hydrolysis of the ester bonds of pimeloyl-ACP esters. E.coli employs a methylation and demethylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes. BioH shows a preference for short chain fatty acid esters (acyl chain length of up to 6 carbons) and short chain [...] (256 aa) | ||||
tpiA | Triosephosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (255 aa) | ||||
murB | UDP-N-acetylenolpyruvoylglucosamine reductase, FAD-binding; Cell wall formation; Belongs to the MurB family. (342 aa) | ||||
birA | Bifunctional ligase/repressor BirA; Acts both as a biotin--[acetyl-CoA-carboxylase] ligase and a biotin-operon repressor. In the presence of ATP, BirA activates biotin to form the BirA-biotinyl-5'-adenylate (BirA-bio-5'-AMP or holoBirA) complex. HoloBirA can either transfer the biotinyl moiety to the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase, or bind to the biotin operator site and inhibit transcription of the operon. (321 aa) | ||||
lplA | Lipoate-protein ligase A; Catalyzes both the ATP-dependent activation of exogenously supplied lipoate to lipoyl-AMP and the transfer of the activated lipoyl onto the lipoyl domains of lipoate-dependent enzymes. Is also able to catalyze very poorly the transfer of lipoyl and octanoyl moiety from their acyl carrier protein. (338 aa) | ||||
trpR | Transcriptional repressor, tryptophan-binding; This protein is an aporepressor. When complexed with L- tryptophan it binds the operator region of the trp operon (5'- ACTAGT-'3') and prevents the initiation of transcription. The complex also regulates trp repressor biosynthesis by binding to its regulatory region. (108 aa) | ||||
scpB | methylmalonyl-CoA decarboxylase, biotin-independent; Catalyzes the decarboxylation of (R)-methylmalonyl-CoA to propionyl-CoA. Could be part of a pathway that converts succinate to propanoate. (261 aa) | ||||
gcvH | Glycine cleavage complex lipoylprotein; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. (129 aa) | ||||
gcvP | Glycine decarboxylase, PLP-dependent, subunit P of glycine cleavage complex; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. (957 aa) | ||||
pheA | Chorismate mutase and prephenate dehydratase, P-protein; Catalyzes the Claisen rearrangement of chorismate to prephenate and the decarboxylation/dehydration of prephenate to phenylpyruvate. (386 aa) | ||||
iscS | Cysteine desulfurase (tRNA sulfurtransferase), PLP-dependent; Master enzyme that delivers sulfur to a number of partners involved in Fe-S cluster assembly, tRNA modification or cofactor biosynthesis. Catalyzes the removal of elemental sulfur from cysteine to produce alanine. Functions as a sulfur delivery protein for Fe-S cluster synthesis onto IscU, an Fe-S scaffold assembly protein, as well as other S acceptor proteins. Preferentially binds to disordered IscU on which the Fe-S is assembled, IscU converts to the structured state and then dissociates from IscS to transfer the Fe-S to a [...] (404 aa) | ||||
accD | acetyl-CoA carboxylase, beta (carboxyltransferase) subunit; Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA; Belongs to the AccD/PCCB family. (304 aa) | ||||
pflB | Formate acetyltransferase 1; Protein involved in anaerobic respiration and cellular amino acid catabolic process. (760 aa) | ||||
bioD | Dethiobiotin synthetase; Catalyzes a mechanistically unusual reaction, the ATP- dependent insertion of CO2 between the N7 and N8 nitrogen atoms of 7,8- diaminopelargonic acid (DAPA) to form an ureido ring. Only CTP can partially replace ATP while diaminobiotin is only 37% as effective as 7,8-diaminopelargonic acid; Belongs to the dethiobiotin synthetase family. (225 aa) | ||||
bioC | malonyl-ACP O-methyltransferase, SAM-dependent; Converts the free carboxyl group of a malonyl-thioester to its methyl ester by transfer of a methyl group from S-adenosyl-L- methionine (SAM). It allows to synthesize pimeloyl-ACP via the fatty acid synthetic pathway. E.coli employs a methylation and demethylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes. (251 aa) | ||||
bioF | 8-amino-7-oxononanoate synthase; Catalyzes the decarboxylative condensation of pimeloyl-[acyl- carrier protein] and L-alanine to produce 8-amino-7-oxononanoate (AON), [acyl-carrier protein], and carbon dioxide. Can also use pimeloyl-CoA instead of pimeloyl-ACP as substrate, but it is believed that pimeloyl- ACP rather than pimeloyl-CoA is the physiological substrate of BioF. Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. BioF subfamily. (384 aa) | ||||
bioA | 7,8-diaminopelargonic acid synthase, PLP-dependent; Catalyzes the transfer of the alpha-amino group from S- adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form 7,8-diaminopelargonic acid (DAPA). It is the only animotransferase known to utilize SAM as an amino donor; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. BioA subfamily. (429 aa) | ||||
sucB | Dihydrolipoyltranssuccinase; E2 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the second step in the conversion of 2- oxoglutarate to succinyl-CoA and CO(2). (405 aa) | ||||
lipB | Octanoyltransferase; Catalyzes the transfer of endogenously produced octanoic acid from octanoyl-acyl-carrier-protein onto the lipoyl domains of lipoate- dependent enzymes. Lipoyl-ACP can also act as a substrate although octanoyl-ACP is likely to be the physiological substrate. Belongs to the LipB family. (213 aa) | ||||
ybeF | Putative transcriptional regulator LYSR-type; Protein involved in transcription activator activity, transcription repressor activity and transcription; Belongs to the LysR transcriptional regulatory family. (317 aa) | ||||
lacZ | beta-D-galactosidase; Protein involved in carbohydrate catabolic process; Belongs to the glycosyl hydrolase 2 family. (1024 aa) | ||||
fadE | Acyl coenzyme A dehydrogenase; Catalyzes the dehydrogenation of acyl-coenzymes A (acyl-CoAs) to 2-enoyl-CoAs, the first step of the beta-oxidation cycle of fatty acid degradation. Is required for E.coli to utilize dodecanoate or oleate as the sole carbon and energy source for growth. (814 aa) | ||||
mtn | 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase; Catalyzes the irreversible cleavage of the glycosidic bond in both 5'-methylthioadenosine (MTA) and S-adenosylhomocysteine (SAH/AdoHcy) to adenine and the corresponding thioribose, 5'- methylthioribose and S-ribosylhomocysteine, respectively. Also cleaves 5'-deoxyadenosine, a toxic by-product of radical S-adenosylmethionine (SAM) enzymes, into 5- deoxyribose and adenine. Thus, is required for in vivo function of the radical SAM enzymes biotin synthase and lipoic acid synthase, that are inhibited by 5'-deoxyadenosine accumulati [...] (232 aa) | ||||
lpd | Dihydrolipoyl dehydrogenase; Lipoamide dehydrogenase is a component of the glycine cleavage system as well as of the alpha-ketoacid dehydrogenase complexes. (474 aa) | ||||
aceF | Pyruvate dehydrogenase, dihydrolipoyltransacetylase component E2; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). It contains multiple copies of three enzymatic components: pyruvate dehydrogenase (E1), dihydrolipoamide acetyltransferase (E2) and lipoamide dehydrogenase (E3). (630 aa) | ||||
aceE | Pyruvate dehydrogenase, decarboxylase component E1, thiamine triphosphate-binding; Component of the pyruvate dehydrogenase (PDH) complex, that catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (887 aa) | ||||
tdcE | Pyruvate formate-lyase 4/2-ketobutyrate formate-lyase; Catalyzes the cleavage of 2-ketobutyrate to propionyl-CoA and formate. It can also use pyruvate as substrate. Belongs to the glycyl radical enzyme (GRE) family. PFL subfamily. (764 aa) |