Your Input: | |||||
ftsH | Protease, ATP-dependent zinc-metallo; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins. Degrades a few membrane proteins that have not been assembled into complexes such as SecY, F(0) ATPase subunit a and YccA, and also cytoplasmic proteins sigma-32, LpxC, KdtA and phage lambda cII protein among others. Degrades membrane proteins in a processive manner starting at either the N- or C-terminus; recognition requires a cytoplasmic tail of about 20 residues with no apparent [...] (644 aa) | ||||
sufC | SufBCD Fe-S cluster assembly scaffold protein, ATP-binding protein; Has low ATPase activity. The SufBCD complex acts synergistically with SufE to stimulate the cysteine desulfurase activity of SufS. The SufBCD complex contributes to the assembly or repair of oxygen-labile iron-sulfur clusters under oxidative stress. May facilitate iron uptake from extracellular iron chelators under iron limitation. (248 aa) | ||||
sufD | Component of SufBCD Fe-S cluster assembly scaffold; The SufBCD complex acts synergistically with SufE to stimulate the cysteine desulfurase activity of SufS. The SufBCD complex contributes to the assembly or repair of oxygen-labile iron-sulfur clusters under oxidative stress. May facilitate iron uptake from extracellular iron chelators under iron limitation. Required for the stability of the FhuF protein. (423 aa) | ||||
grxD | Glutaredoxin-4; Monothiol glutaredoxin involved in the biogenesis of iron- sulfur clusters; Belongs to the glutaredoxin family. Monothiol subfamily. (115 aa) | ||||
miaB | tRNA-i(6)A37 methylthiotransferase; Catalyzes the methylthiolation of N6-(dimethylallyl)adenosine (i(6)A), leading to the formation of 2-methylthio-N6- (dimethylallyl)adenosine (ms(2)i(6)A) at position 37 in tRNAs that read codons beginning with uridine. (474 aa) | ||||
hscB | HscA co-chaperone, J domain-containing protein Hsc56; Co-chaperone involved in the maturation of iron-sulfur cluster-containing proteins. Seems to help targeting proteins to be folded toward HscA; Belongs to the HscB family. (171 aa) | ||||
ygfZ | Iron-sulfur cluster repair protein, plumbagin resistance; Folate-binding protein involved in regulating the level of ATP-DnaA and in the modification of some tRNAs. It is probably a key factor in regulatory networks that act via tRNA modification, such as initiation of chromosomal replication; Belongs to the tRNA-modifying YgfZ family. (326 aa) | ||||
yggX | Oxidative damage protective factor for iron-sulfur proteins; Could be a mediator in iron transactions between iron acquisition and iron-requiring processes, such as synthesis and/or repair of Fe-S clusters in biosynthetic enzymes. Necessary to maintain high levels of aconitase under oxidative stress. (91 aa) | ||||
folB | Dihydroneopterin aldolase and dihydroneopterin triphosphate 2'-epimerase; Catalyzes the conversion of 7,8-dihydroneopterin to 6- hydroxymethyl-7,8-dihydropterin. Can use L-threo-dihydroneopterin and D-erythro-dihydroneopterin as substrates for the formation of 6- hydroxymethyldihydropterin, but it can also catalyze the epimerization of carbon 2' of dihydroneopterin to dihydromonapterin at appreciable velocity; Belongs to the DHNA family. (122 aa) | ||||
folP | 7,8-dihydropteroate synthase; Catalyzes the condensation of para-aminobenzoate (pABA) with 6-hydroxymethyl-7,8-dihydropterin diphosphate (DHPt-PP) to form 7,8- dihydropteroate (H2Pte), the immediate precursor of folate derivatives. Belongs to the DHPS family. (282 aa) | ||||
nfuA | Fe/S biogenesis protein, putative scaffold/chaperone protein; Involved in iron-sulfur cluster biogenesis under severe conditions such as iron starvation or oxidative stress. Binds a 4Fe-4S cluster, can transfer this cluster to apoproteins, and thereby intervenes in the maturation of Fe/S proteins. Could also act as a scaffold/chaperone for damaged Fe/S proteins. Required for E.coli to sustain oxidative stress and iron starvation. Also necessary for the use of extracellular DNA as the sole source of carbon and energy. Belongs to the NfuA family. (191 aa) | ||||
tusA | mnm(5)-s(2)U34-tRNA 2-thiolation sulfurtransferase; Sulfur carrier protein involved in sulfur trafficking in the cell. Part of a sulfur-relay system required for 2-thiolation during synthesis of 2-thiouridine of the modified wobble base 5- methylaminomethyl-2-thiouridine (mnm(5)s(2)U) in tRNA. Interacts with IscS and stimulates its cysteine desulfurase activity. Accepts an activated sulfur from IscS, which is then transferred to TusD, and thus determines the direction of sulfur flow from IscS to 2-thiouridine formation. Also appears to be involved in sulfur transfer for the biosynthesi [...] (81 aa) | ||||
grxC | Glutaredoxin 3; The disulfide bond functions as an electron carrier in the glutathione-dependent synthesis of deoxyribonucleotides by the enzyme ribonucleotide reductase. In addition, it is also involved in reducing some disulfide bonds in a coupled system with glutathione reductase; Belongs to the glutaredoxin family. (83 aa) | ||||
cyaY | Iron-dependent inhibitor of iron-sulfur cluster formation; Involved in iron-sulfur (Fe-S) cluster assembly. May act as a regulator of Fe-S biogenesis. Can bind both Fe(2+) and Fe(3+) ions. In vivo, has a positive effect on Fe-S cluster biogenesis under iron- rich growth conditions. In vitro, can inhibit IscS cysteine desulfurase activity and the formation of Fe-S clusters on IscU. In vitro, in the presence of IscS and cysteine, Fe(3+)-CyaY can be used as an iron donor during Fe-S cluster assembly on the scaffold protein IscU. (106 aa) | ||||
oxyR | Oxidative and nitrosative stress transcriptional regulator; Hydrogen peroxide sensor. Activates the expression of a regulon of hydrogen peroxide-inducible genes such as katG, gor, ahpC, ahpF, oxyS (a regulatory RNA), dps, fur and grxA. OxyR expression is negatively autoregulated by binding to a 43 bp region upstream of its own coding sequence. OxyR is inactivated by reduction of its essential disulfide bond by the product of GrxA, itself positively regulated by OxyR. Has also a positive regulatory effect on the production of surface proteins that control the colony morphology and auto- [...] (305 aa) | ||||
nsrR | Nitric oxide-sensitive repressor for NO regulon; Nitric oxide-sensitive repressor of genes involved in protecting the cell against nitrosative stress, such as ytfE, hmpA and ygbA. May require iron for activity. Does not regulates its own transcription. (141 aa) | ||||
ytfE | Iron-sulfur cluster repair protein RIC; Di-iron-containing protein involved in the repair of iron- sulfur clusters damaged by oxidative and nitrosative stress conditions. (220 aa) | ||||
bolA | Stationary-phase morphogene, transcriptional repressor for mreB; Transcriptional regulator that plays an important role in general stress response. Has many effects on cell morphology, cell growth and cell division. Acts by regulating the transcription of many genes, including dacA (PBP-5), dacC (PBP-6), ampC and mreB. Probably involved in the coordination of genes that adapt the cell physiology in order to enhance cell adaptation and survival under stress conditions. Essential for normal cell morphology in stationary phase and under conditions of starvation. Also regulates a complex n [...] (105 aa) | ||||
erpA | Iron-sulfur cluster insertion protein; Probably involved in the insertion of Fe-S clusters into apoproteins in vivo including IspG and/or IspH. Essential for growth under aerobic conditions and for anaerobic respiration but not for fermentation. In vitro it binds Fe-S clusters and transfers them to apo-IspG, which is involved in quinone biosynthesis among many other cell components. Experiments indicate that it is probably also involved in the insertion of other Fe-S clusters than IspG/IspH; Belongs to the HesB/IscA family. (114 aa) | ||||
iscR | Isc operon transcriptional repressor; Regulates the transcription of several operons and genes involved in the biogenesis of Fe-S clusters and Fe-S-containing proteins. Transcriptional repressor of the iscRSUA operon, which is involved in the assembly of Fe-S clusters into Fe-S proteins. In its apoform, under conditions of oxidative stress or iron deprivation, it activates the suf operon, which is a second operon involved in the assembly of Fe-S clusters. Represses its own transcription as well as that of toxin rnlA. (162 aa) | ||||
rpoS | RNA polymerase, sigma S (sigma 38) factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the master transcriptional regulator of the stationary phase and the general stress response. Controls, positively or negatively, the expression of several hundred genes, which are mainly involved in metabolism, transport, regulation and stress management. (330 aa) | ||||
iscU | Iron-sulfur cluster assembly scaffold protein; A scaffold on which IscS assembles Fe-S clusters. Exists as 2 interconverting forms, a structured (S) and disordered (D) form. The D- state is the preferred substrate for IscS. Converts to the S-state when an Fe-S cluster is assembled, which helps it dissociate from IscS to transfer the Fe-S to an acceptor. It is likely that Fe-S cluster coordination is flexible as the role of this complex is to build and then hand off Fe-S clusters; Belongs to the NifU family. (128 aa) | ||||
hscA | DnaK-like molecular chaperone specific for IscU; Chaperone involved in the maturation of iron-sulfur cluster- containing proteins. Has a low intrinsic ATPase activity which is markedly stimulated by HscB. Involved in the maturation of IscU; Belongs to the heat shock protein 70 family. (616 aa) | ||||
fdx | [2Fe-2S] ferredoxin; Ferredoxin are iron-sulfur proteins that transfer electrons in a wide variety of metabolic reactions. Although the function of this ferredoxin is unknown it is probable that it has a role as a cellular electron transfer protein. Involved in the in vivo assembly of the Fe-S clusters in a wide variety of iron-sulfur proteins. (111 aa) | ||||
iscX | Fe(2+) donor and activity modulator for cysteine desulfurase; May function as iron donor in the assembly of iron-sulfur clusters; Belongs to the IscX family. (66 aa) | ||||
ispG | 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase; Converts 2C-methyl-D-erythritol 2,4-cyclodiphosphate (ME- 2,4cPP) into 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate, using flavodoxin as the reducing agent; Belongs to the IspG family. (372 aa) | ||||
yfaE | Uncharacterized ferredoxin-like protein YfaE; Ferredoxin involved with ribonucleotide reductase diferric-tyrosyl radical (Y*) cofactor maintenance. (84 aa) | ||||
folE | GTP cyclohydrolase I; Protein involved in folic acid biosynthetic process; Belongs to the GTP cyclohydrolase I family. (222 aa) | ||||
mrp | Antiporter inner membrane protein; Binds and transfers iron-sulfur (Fe-S) clusters to target apoproteins. Can hydrolyze ATP; Belongs to the Mrp/NBP35 ATP-binding proteins family. (369 aa) | ||||
ftnA | Ferritin iron storage protein (cytoplasmic); Iron-storage protein; Belongs to the ferritin family. Prokaryotic subfamily. (165 aa) | ||||
ftnB | Ferritin B, putative ferrous iron reservoir; Ferritin-like protein; Protein involved in iron ion transport. (167 aa) | ||||
sufB | Component of SufBCD Fe-S cluster assembly scaffold; The SufBCD complex acts synergistically with SufE to stimulate the cysteine desulfurase activity of SufS. The SufBCD complex contributes to the assembly or repair of oxygen-labile iron-sulfur clusters under oxidative stress. May facilitate iron uptake from extracellular iron chelators under iron limitation. (495 aa) |