node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
napG | napH | b2205 | b2204 | Ferredoxin-type protein; Required for electron transfer from ubiquinol, via NapC, to the periplasmic nitrate reductase NapAB complex. | Ferredoxin-type protein; Required for electron transfer from ubiquinol, via NapC, to the periplasmic nitrate reductase NapAB complex. | 0.999 |
napG | nrfA | b2205 | b4070 | Ferredoxin-type protein; Required for electron transfer from ubiquinol, via NapC, to the periplasmic nitrate reductase NapAB complex. | Nitrite reductase, formate-dependent, cytochrome; Catalyzes the reduction of nitrite to ammonia, consuming six electrons in the process. Has very low activity toward hydroxylamine. Has even lower activity toward sulfite. Sulfite reductase activity is maximal at neutral pH (By similarity). | 0.729 |
napH | napG | b2204 | b2205 | Ferredoxin-type protein; Required for electron transfer from ubiquinol, via NapC, to the periplasmic nitrate reductase NapAB complex. | Ferredoxin-type protein; Required for electron transfer from ubiquinol, via NapC, to the periplasmic nitrate reductase NapAB complex. | 0.999 |
napH | narH | b2204 | b1225 | Ferredoxin-type protein; Required for electron transfer from ubiquinol, via NapC, to the periplasmic nitrate reductase NapAB complex. | Nitrate reductase 1, beta (Fe-S) subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The beta chain is an electron transfer unit containing four cysteine clusters involved in the formation of iron-sulfur centers. Electrons are transferred from the gamma chain to the molybdenum cofactor of the alpha subunit. | 0.458 |
napH | nrfA | b2204 | b4070 | Ferredoxin-type protein; Required for electron transfer from ubiquinol, via NapC, to the periplasmic nitrate reductase NapAB complex. | Nitrite reductase, formate-dependent, cytochrome; Catalyzes the reduction of nitrite to ammonia, consuming six electrons in the process. Has very low activity toward hydroxylamine. Has even lower activity toward sulfite. Sulfite reductase activity is maximal at neutral pH (By similarity). | 0.838 |
narG | narH | b1224 | b1225 | Nitrate reductase 1, alpha subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The alpha chain is the actual site of nitrate reduction. | Nitrate reductase 1, beta (Fe-S) subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The beta chain is an electron transfer unit containing four cysteine clusters involved in the formation of iron-sulfur centers. Electrons are transferred from the gamma chain to the molybdenum cofactor of the alpha subunit. | 0.999 |
narG | narJ | b1224 | b1226 | Nitrate reductase 1, alpha subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The alpha chain is the actual site of nitrate reduction. | Molybdenum-cofactor-assembly chaperone delta subunit of nitrate reductase 1; Chaperone required for proper molybdenum cofactor insertion and final assembly of the membrane-bound respiratory nitrate reductase 1. Required for the insertion of the molybdenum into the apo-NarG subunit, maybe by keeping NarG in an appropriate competent-open conformation for the molybdenum cofactor insertion to occur. NarJ maintains the apoNarGH complex in a soluble state. Upon insertion of the molybdenum cofactor, NarJ seems to dissociate from the activated soluble NarGH complex, before its association with [...] | 0.999 |
narG | nrfA | b1224 | b4070 | Nitrate reductase 1, alpha subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The alpha chain is the actual site of nitrate reduction. | Nitrite reductase, formate-dependent, cytochrome; Catalyzes the reduction of nitrite to ammonia, consuming six electrons in the process. Has very low activity toward hydroxylamine. Has even lower activity toward sulfite. Sulfite reductase activity is maximal at neutral pH (By similarity). | 0.983 |
narH | napH | b1225 | b2204 | Nitrate reductase 1, beta (Fe-S) subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The beta chain is an electron transfer unit containing four cysteine clusters involved in the formation of iron-sulfur centers. Electrons are transferred from the gamma chain to the molybdenum cofactor of the alpha subunit. | Ferredoxin-type protein; Required for electron transfer from ubiquinol, via NapC, to the periplasmic nitrate reductase NapAB complex. | 0.458 |
narH | narG | b1225 | b1224 | Nitrate reductase 1, beta (Fe-S) subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The beta chain is an electron transfer unit containing four cysteine clusters involved in the formation of iron-sulfur centers. Electrons are transferred from the gamma chain to the molybdenum cofactor of the alpha subunit. | Nitrate reductase 1, alpha subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The alpha chain is the actual site of nitrate reduction. | 0.999 |
narH | narJ | b1225 | b1226 | Nitrate reductase 1, beta (Fe-S) subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The beta chain is an electron transfer unit containing four cysteine clusters involved in the formation of iron-sulfur centers. Electrons are transferred from the gamma chain to the molybdenum cofactor of the alpha subunit. | Molybdenum-cofactor-assembly chaperone delta subunit of nitrate reductase 1; Chaperone required for proper molybdenum cofactor insertion and final assembly of the membrane-bound respiratory nitrate reductase 1. Required for the insertion of the molybdenum into the apo-NarG subunit, maybe by keeping NarG in an appropriate competent-open conformation for the molybdenum cofactor insertion to occur. NarJ maintains the apoNarGH complex in a soluble state. Upon insertion of the molybdenum cofactor, NarJ seems to dissociate from the activated soluble NarGH complex, before its association with [...] | 0.999 |
narH | nrfA | b1225 | b4070 | Nitrate reductase 1, beta (Fe-S) subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The beta chain is an electron transfer unit containing four cysteine clusters involved in the formation of iron-sulfur centers. Electrons are transferred from the gamma chain to the molybdenum cofactor of the alpha subunit. | Nitrite reductase, formate-dependent, cytochrome; Catalyzes the reduction of nitrite to ammonia, consuming six electrons in the process. Has very low activity toward hydroxylamine. Has even lower activity toward sulfite. Sulfite reductase activity is maximal at neutral pH (By similarity). | 0.931 |
narJ | narG | b1226 | b1224 | Molybdenum-cofactor-assembly chaperone delta subunit of nitrate reductase 1; Chaperone required for proper molybdenum cofactor insertion and final assembly of the membrane-bound respiratory nitrate reductase 1. Required for the insertion of the molybdenum into the apo-NarG subunit, maybe by keeping NarG in an appropriate competent-open conformation for the molybdenum cofactor insertion to occur. NarJ maintains the apoNarGH complex in a soluble state. Upon insertion of the molybdenum cofactor, NarJ seems to dissociate from the activated soluble NarGH complex, before its association with [...] | Nitrate reductase 1, alpha subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The alpha chain is the actual site of nitrate reduction. | 0.999 |
narJ | narH | b1226 | b1225 | Molybdenum-cofactor-assembly chaperone delta subunit of nitrate reductase 1; Chaperone required for proper molybdenum cofactor insertion and final assembly of the membrane-bound respiratory nitrate reductase 1. Required for the insertion of the molybdenum into the apo-NarG subunit, maybe by keeping NarG in an appropriate competent-open conformation for the molybdenum cofactor insertion to occur. NarJ maintains the apoNarGH complex in a soluble state. Upon insertion of the molybdenum cofactor, NarJ seems to dissociate from the activated soluble NarGH complex, before its association with [...] | Nitrate reductase 1, beta (Fe-S) subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The beta chain is an electron transfer unit containing four cysteine clusters involved in the formation of iron-sulfur centers. Electrons are transferred from the gamma chain to the molybdenum cofactor of the alpha subunit. | 0.999 |
nrfA | napG | b4070 | b2205 | Nitrite reductase, formate-dependent, cytochrome; Catalyzes the reduction of nitrite to ammonia, consuming six electrons in the process. Has very low activity toward hydroxylamine. Has even lower activity toward sulfite. Sulfite reductase activity is maximal at neutral pH (By similarity). | Ferredoxin-type protein; Required for electron transfer from ubiquinol, via NapC, to the periplasmic nitrate reductase NapAB complex. | 0.729 |
nrfA | napH | b4070 | b2204 | Nitrite reductase, formate-dependent, cytochrome; Catalyzes the reduction of nitrite to ammonia, consuming six electrons in the process. Has very low activity toward hydroxylamine. Has even lower activity toward sulfite. Sulfite reductase activity is maximal at neutral pH (By similarity). | Ferredoxin-type protein; Required for electron transfer from ubiquinol, via NapC, to the periplasmic nitrate reductase NapAB complex. | 0.838 |
nrfA | narG | b4070 | b1224 | Nitrite reductase, formate-dependent, cytochrome; Catalyzes the reduction of nitrite to ammonia, consuming six electrons in the process. Has very low activity toward hydroxylamine. Has even lower activity toward sulfite. Sulfite reductase activity is maximal at neutral pH (By similarity). | Nitrate reductase 1, alpha subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The alpha chain is the actual site of nitrate reduction. | 0.983 |
nrfA | narH | b4070 | b1225 | Nitrite reductase, formate-dependent, cytochrome; Catalyzes the reduction of nitrite to ammonia, consuming six electrons in the process. Has very low activity toward hydroxylamine. Has even lower activity toward sulfite. Sulfite reductase activity is maximal at neutral pH (By similarity). | Nitrate reductase 1, beta (Fe-S) subunit; The nitrate reductase enzyme complex allows E.coli to use nitrate as an electron acceptor during anaerobic growth. The beta chain is an electron transfer unit containing four cysteine clusters involved in the formation of iron-sulfur centers. Electrons are transferred from the gamma chain to the molybdenum cofactor of the alpha subunit. | 0.931 |