STRINGSTRING
poxB poxB pflB pflB ptsG ptsG adhE adhE ldhA ldhA dld dld glcB glcB glcG glcG glcD glcD ilvA ilvA aceB aceB frdB frdB glcF glcF glcE glcE
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
poxBPyruvate dehydrogenase, thiamine triphosphate-binding, FAD-binding; Pyruvate oxidase; Protein involved in carbohydrate catabolic process and pyruvate catabolic process; Belongs to the TPP enzyme family. (572 aa)
pflBFormate acetyltransferase 1; Protein involved in anaerobic respiration and cellular amino acid catabolic process. (760 aa)
ptsGFused glucose-specific PTS enzymes: IIB component/IIC component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II complex composed of PtsG and Crr is involved in glucose transport. Also functions as a chemoreceptor monitoring the environment for changes in sugar concentration and an effector modulating the activity of the transcriptional repressor Mlc. (477 aa)
adhEAcetaldehyde dehydrogenase [acetylating]; This enzyme has three activities: ADH, ACDH, and PFL- deactivase. In aerobic conditions it acts as a hydrogen peroxide scavenger. The PFL deactivase activity catalyzes the quenching of the pyruvate-formate-lyase catalyst in an iron, NAD, and CoA dependent reaction; In the N-terminal section; belongs to the aldehyde dehydrogenase family. (891 aa)
ldhAFermentative D-lactate dehydrogenase, NAD-dependent; Fermentative lactate dehydrogenase; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (329 aa)
dldD-lactate dehydrogenase, FAD-binding, NADH independent; Catalyzes the oxidation of D-lactate to pyruvate. Electrons derived from D-lactate oxidation are transferred to the ubiquinone/cytochrome electron transfer chain, where they may be used to provide energy for the active transport of a variety of amino acids and sugars across the membrane. (571 aa)
glcBMalate synthase G; Involved in the glycolate utilization. Catalyzes the condensation and subsequent hydrolysis of acetyl-coenzyme A (acetyl- CoA) and glyoxylate to form malate and CoA. (723 aa)
glcGDUF336 family protein; Belongs to the GlcG family. (134 aa)
glcDGlycolate oxidase subunit, FAD-linked; Component of a complex that catalyzes the oxidation of glycolate to glyoxylate. Is required for E.coli to grow on glycolate as a sole source of carbon. Is also able to oxidize D-lactate ((R)-lactate) with a similar rate. Does not link directly to O(2), and 2,6-dichloroindophenol (DCIP) and phenazine methosulfate (PMS) can act as artificial electron acceptors in vitro, but the physiological molecule that functions as primary electron acceptor during glycolate oxidation is unknown ; Belongs to the FAD-binding oxidoreductase/transferase type 4 family. (499 aa)
ilvAL-threonine dehydratase, biosynthetic; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA. (514 aa)
aceBMalate synthase A; Protein involved in glyoxylate cycle. (533 aa)
frdBFumarate reductase (anaerobic), Fe-S subunit; Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth. (244 aa)
glcFGlycolate oxidase 4Fe-4S iron-sulfur cluster subunit; Component of a complex that catalyzes the oxidation of glycolate to glyoxylate. Is required for E.coli to grow on glycolate as a sole source of carbon. Is also able to oxidize D-lactate ((R)-lactate) with a similar rate. Does not link directly to O(2), and 2,6-dichloroindophenol (DCIP) and phenazine methosulfate (PMS) can act as artificial electron acceptors in vitro, but the physiological molecule that functions as primary electron acceptor during glycolate oxidation is unknown. (407 aa)
glcEGlycolate oxidase FAD binding subunit; Component of a complex that catalyzes the oxidation of glycolate to glyoxylate. Is required for E.coli to grow on glycolate as a sole source of carbon. Is also able to oxidize D-lactate ((R)-lactate) with a similar rate. Does not link directly to O(2), and 2,6-dichloroindophenol (DCIP) and phenazine methosulfate (PMS) can act as artificial electron acceptors in vitro, but the physiological molecule that functions as primary electron acceptor during glycolate oxidation is unknown. (350 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (26%) [HD]