STRINGSTRING
sgbH sgbH sgbU sgbU mtlA mtlA ulaA ulaA ulaB ulaB ulaC ulaC ulaD ulaD ulaE ulaE ulaF ulaF
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
sgbH3-keto-L-gulonate 6-phosphate decarboxylase; Catalyzes the decarboxylation of 3-keto-L-gulonate-6-P into L-xylulose-5-P. May be involved in the utilization of 2,3-diketo-L- gulonate. (220 aa)
sgbUPutative L-xylulose 5-phosphate 3-epimerase; Catalyzes the isomerization of L-xylulose-5-phosphate to L- ribulose-5-phosphate (Potential). May be involved in the utilization of 2,3-diketo-L-gulonate; Belongs to the L-ribulose-5-phosphate 3-epimerase family. (286 aa)
mtlAMannitol-specific PTS enzyme: IIA, IIB and IIC components; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. This system is involved in D-mannitol transport. Also able to use D-mannonic acid. (637 aa)
ulaAL-ascorbate-specific enzyme IIC permease component of PTS; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II UlaABC PTS system is involved in ascorbate transport. Belongs to the UlaA family. (465 aa)
ulaBL-ascorbate-specific enzyme IIB component of PTS; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II UlaABC PTS system is involved in ascorbate transport. (101 aa)
ulaCL-ascorbate-specific enzyme IIA component of PTS; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II UlaABC PTS system is involved in ascorbate transport. (154 aa)
ulaD3-keto-L-gulonate 6-phosphate decarboxylase; Catalyzes the decarboxylation of 3-keto-L-gulonate-6-P into L-xylulose-5-P. Is involved in the anaerobic L-ascorbate utilization. Belongs to the HPS/KGPDC family. KGPDC subfamily. (216 aa)
ulaEL-xylulose 5-phosphate 3-epimerase; Catalyzes the isomerization of L-xylulose-5-phosphate to L- ribulose-5-phosphate. Is involved in the anaerobic L-ascorbate utilization; Belongs to the L-ribulose-5-phosphate 3-epimerase family. (284 aa)
ulaFL-ribulose 5-phosphate 4-epimerase; Catalyzes the isomerization of L-ribulose 5-phosphate to D- xylulose 5-phosphate. Is involved in the anaerobic L-ascorbate utilization; Belongs to the aldolase class II family. AraD/FucA subfamily. (228 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (24%) [HD]