STRINGSTRING
gabT gabT guaA guaA glcB glcB gadA gadA glnA glnA gdhA gdhA aceB aceB aceA aceA sad sad puuE puuE sdhA sdhA nusB nusB
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
gabT4-aminobutyrate aminotransferase, PLP-dependent; Pyridoxal phosphate-dependent enzyme that catalyzes transamination between primary amines and alpha-keto acids. Catalyzes the transfer of the amino group from gamma-aminobutyrate (GABA) to alpha-ketoglutarate (KG) to yield succinic semialdehyde (SSA) and glutamate. Thereby functions in a GABA degradation pathway that allows some E.coli strains to utilize GABA as a nitrogen source for growth. Also catalyzes the conversion of 5-aminovalerate to glutarate semialdehyde, as part of a L-lysine degradation pathway that proceeds via cadaverine, [...] (426 aa)
guaAGMP synthetase (glutamine aminotransferase); Catalyzes the synthesis of GMP from XMP. (525 aa)
glcBMalate synthase G; Involved in the glycolate utilization. Catalyzes the condensation and subsequent hydrolysis of acetyl-coenzyme A (acetyl- CoA) and glyoxylate to form malate and CoA. (723 aa)
gadAGlutamate decarboxylase A, PLP-dependent; Converts glutamate to gamma-aminobutyrate (GABA), consuming one intracellular proton in the reaction. The gad system helps to maintain a near-neutral intracellular pH when cells are exposed to extremely acidic conditions. The ability to survive transit through the acidic conditions of the stomach is essential for successful colonization of the mammalian host by commensal and pathogenic bacteria. (466 aa)
glnAGlutamine synthetase; Catalyzes the ATP-dependent biosynthesis of glutamine from glutamate and ammonia. (469 aa)
gdhAGlutamate dehydrogenase, NADP-specific; Catalyzes the reversible oxidative deamination of glutamate to alpha-ketoglutarate and ammonia; Belongs to the Glu/Leu/Phe/Val dehydrogenases family. (447 aa)
aceBMalate synthase A; Protein involved in glyoxylate cycle. (533 aa)
aceAIsocitrate lyase; Involved in the metabolic adaptation in response to environmental changes. Catalyzes the reversible formation of succinate and glyoxylate from isocitrate, a key step of the glyoxylate cycle, which operates as an anaplerotic route for replenishing the tricarboxylic acid cycle during growth on fatty acid substrates. (434 aa)
sadSuccinate semialdehyde dehydrogenase, NAD(P)+-dependent; Catalyzes the NAD(+)-dependent oxidation of succinate semialdehyde to succinate. It acts preferentially with NAD as cosubstrate but can also use NADP. Prevents the toxic accumulation of succinate semialdehyde (SSA) and plays an important role when arginine and putrescine are used as the sole nitrogen or carbon sources. (462 aa)
puuE4-aminobutyrate aminotransferase, PLP-dependent; Catalyzes the transfer of the amino group from gamma- aminobutyrate (GABA) to alpha-ketoglutarate (KG) to yield succinic semialdehyde (SSA). PuuE is important for utilization of putrescine as the sole nitrogen or carbon source; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. (421 aa)
sdhASuccinate dehydrogenase, flavoprotein subunit; Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth. (588 aa)
nusBTranscription antitermination protein; Involved in transcription antitermination. Required for transcription of ribosomal RNA (rRNA) genes. Binds specifically to the boxA antiterminator sequence of the ribosomal RNA (rrn) operons. The affinity of NusB for the boxA RNA sequence is significantly increased in the presence of the ribosomal protein S10. NusB may serve as a loading factor that ensures efficient entry of S10 into the transcription complexes. It also modulates the rrn boxA-mediated transcription elongation rates. (139 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (22%) [HD]