Your Input: | |||||
ldhA | Fermentative D-lactate dehydrogenase, NAD-dependent; Fermentative lactate dehydrogenase; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (329 aa) | ||||
poxB | Pyruvate dehydrogenase, thiamine triphosphate-binding, FAD-binding; Pyruvate oxidase; Protein involved in carbohydrate catabolic process and pyruvate catabolic process; Belongs to the TPP enzyme family. (572 aa) | ||||
pflB | Formate acetyltransferase 1; Protein involved in anaerobic respiration and cellular amino acid catabolic process. (760 aa) | ||||
ghrA | Glyoxylate/hydroxypyruvate reductase A; Catalyzes the NADPH-dependent reduction of glyoxylate and hydroxypyruvate into glycolate and glycerate, respectively. Inactive towards 2-oxo-D-gluconate, 2-oxoglutarate, oxaloacetate and pyruvate. Only D- and L-glycerate are involved in the oxidative activity with NADP. Activity with NAD is very low. (312 aa) | ||||
ptsG | Fused glucose-specific PTS enzymes: IIB component/IIC component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II complex composed of PtsG and Crr is involved in glucose transport. Also functions as a chemoreceptor monitoring the environment for changes in sugar concentration and an effector modulating the activity of the transcriptional repressor Mlc. (477 aa) | ||||
adhE | Acetaldehyde dehydrogenase [acetylating]; This enzyme has three activities: ADH, ACDH, and PFL- deactivase. In aerobic conditions it acts as a hydrogen peroxide scavenger. The PFL deactivase activity catalyzes the quenching of the pyruvate-formate-lyase catalyst in an iron, NAD, and CoA dependent reaction; In the N-terminal section; belongs to the aldehyde dehydrogenase family. (891 aa) | ||||
dld | D-lactate dehydrogenase, FAD-binding, NADH independent; Catalyzes the oxidation of D-lactate to pyruvate. Electrons derived from D-lactate oxidation are transferred to the ubiquinone/cytochrome electron transfer chain, where they may be used to provide energy for the active transport of a variety of amino acids and sugars across the membrane. (571 aa) | ||||
ackA | Acetate kinase A and propionate kinase 2; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. During anaerobic growth of the organism, this enzyme is also involved in the synthesis of most of the ATP formed catabolically; Belongs to the acetokinase family. (400 aa) | ||||
pta | Phosphate acetyltransferase; Involved in acetate metabolism. Catalyzes the reversible interconversion of acetyl-CoA and acetyl phosphate. The direction of the overall reaction changes depending on growth conditions. On minimal medium acetyl-CoA is generated. In rich medium acetyl-CoA is converted to acetate and allowing the cell to dump the excess of acetylation potential in exchange for energy in the form of ATP. In the N-terminal section; belongs to the CobB/CobQ family. (714 aa) | ||||
glcB | Malate synthase G; Involved in the glycolate utilization. Catalyzes the condensation and subsequent hydrolysis of acetyl-coenzyme A (acetyl- CoA) and glyoxylate to form malate and CoA. (723 aa) | ||||
ghrB | Glyoxylate/hydroxypyruvate reductase B; Catalyzes the NADPH-dependent reduction of glyoxylate and hydroxypyruvate into glycolate and glycerate, respectively. Can also reduce 2,5-diketo-D-gluconate (25DKG) to 5-keto-D-gluconate (5KDG), 2- keto-D-gluconate (2KDG) to D-gluconate, and 2-keto-L-gulonate (2KLG) to L-idonate (IA), but it is not its physiological function. Inactive towards 2-oxoglutarate, oxaloacetate, pyruvate, 5-keto-D-gluconate, D- fructose and L-sorbose. Activity with NAD is very low; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. GhrB subfamily. (324 aa) | ||||
xylB | Xylulokinase; Catalyzes the phosphorylation of D-xylulose to D-xylulose 5- phosphate. Also catalyzes the phosphorylation of 1- deoxy-D-xylulose to 1-deoxy-D-xylulose 5-phosphate, with lower efficiency. Can also use D-ribulose, xylitol and D- arabitol, but D-xylulose is preferred over the other substrates. Has a weak substrate-independent Mg-ATP-hydrolyzing activity ; Belongs to the FGGY kinase family. (484 aa) | ||||
xylA | D-xylose isomerase; Protein involved in carbohydrate catabolic process and glucose metabolic process; Belongs to the xylose isomerase family. (440 aa) | ||||
ilvA | L-threonine dehydratase, biosynthetic; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA. (514 aa) | ||||
aceB | Malate synthase A; Protein involved in glyoxylate cycle. (533 aa) | ||||
frdB | Fumarate reductase (anaerobic), Fe-S subunit; Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth. (244 aa) |