STRINGSTRING
groL groL groS groS gldA gldA aldB aldB xylA xylA xylB xylB eutE eutE gnd gnd astD astD mhpF mhpF araB araB araA araA araD araD
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
groLCpn60 chaperonin GroEL, large subunit of GroESL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. (548 aa)
groSCpn10 chaperonin GroES, small subunit of GroESL; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter; Belongs to the GroES chaperonin family. (97 aa)
gldAGlycerol dehydrogenase, NAD+ dependent; Catalyzes the NAD-dependent oxidation of glycerol to dihydroxyacetone (glycerone). Allows microorganisms to utilize glycerol as a source of carbon under anaerobic conditions. In E.coli, an important role of GldA is also likely to regulate the intracellular level of dihydroxyacetone by catalyzing the reverse reaction, i.e. the conversion of dihydroxyacetone into glycerol. Possesses a broad substrate specificity, since it is also able to oxidize 1,2-propanediol and to reduce glycolaldehyde, methylglyoxal and hydroxyacetone into ethylene glycol, lac [...] (367 aa)
aldBAldehyde dehydrogenase B; Catalyzes the NADP-dependent oxidation of diverse aldehydes such as chloroacetaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, mafosfamide, 4-hydroperoxycyclophosphamide. Its preferred substrates are acetaldehyde and chloroacetaldehyde. (512 aa)
xylAD-xylose isomerase; Protein involved in carbohydrate catabolic process and glucose metabolic process; Belongs to the xylose isomerase family. (440 aa)
xylBXylulokinase; Catalyzes the phosphorylation of D-xylulose to D-xylulose 5- phosphate. Also catalyzes the phosphorylation of 1- deoxy-D-xylulose to 1-deoxy-D-xylulose 5-phosphate, with lower efficiency. Can also use D-ribulose, xylitol and D- arabitol, but D-xylulose is preferred over the other substrates. Has a weak substrate-independent Mg-ATP-hydrolyzing activity ; Belongs to the FGGY kinase family. (484 aa)
eutEAldehyde oxidoreductase, ethanolamine utilization protein; May act as an acetaldehyde dehydrogenase that converts acetaldehyde into acetyl-CoA. (467 aa)
gnd6-phosphogluconate dehydrogenase, decarboxylating; Catalyzes the oxidative decarboxylation of 6-phosphogluconate to ribulose 5-phosphate and CO(2), with concomitant reduction of NADP to NADPH. (468 aa)
astDSuccinylglutamic semialdehyde dehydrogenase; Catalyzes the NAD-dependent reduction of succinylglutamate semialdehyde into succinylglutamate. Also shows activity with decanal or succinic semialdehyde as the electron donor and NAD as the electron acceptor. No activity is detected with NADP as the electron acceptor. Therefore, is an aldehyde dehydrogenase with broad substrate specificity. (492 aa)
mhpFacetaldehyde-CoA dehydrogenase II, NAD-binding; Catalyzes the conversion of acetaldehyde to acetyl-CoA, using NAD(+) and coenzyme A. Is the final enzyme in the meta-cleavage pathway for the degradation of 3-phenylpropanoate. Functions as a chaperone protein for folding of MhpE. (316 aa)
araBL-ribulokinase; Protein involved in carbohydrate catabolic process; Belongs to the ribulokinase family. (566 aa)
araAL-arabinose isomerase; Catalyzes the conversion of L-arabinose to L-ribulose. (500 aa)
araDL-ribulose-5-phosphate 4-epimerase; Involved in the degradation of L-arabinose. Catalyzes the interconversion of L-ribulose 5-phosphate (LRu5P) and D- xylulose 5-phosphate (D-Xu5P) via a retroaldol/aldol mechanism (carbon- carbon bond cleavage analogous to a class II aldolase reaction). (231 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (18%) [HD]