Your Input: | |||||
argB | Acetylglutamate kinase; Catalyzes the ATP-dependent phosphorylation of N-acetyl-L- glutamate; Belongs to the acetylglutamate kinase family. ArgB subfamily. (258 aa) | ||||
argC | N-acetyl-gamma-glutamylphosphate reductase, NAD(P)-binding; Catalyzes the NADPH-dependent reduction of N-acetyl-5- glutamyl phosphate to yield N-acetyl-L-glutamate 5-semialdehyde. Belongs to the NAGSA dehydrogenase family. Type 1 subfamily. (334 aa) | ||||
metF | 5,10-methylenetetrahydrofolate reductase; Methylenetetrahydrofolate reductase required to generate the methyl groups necessary for methionine synthetase to convert homocysteine to methionine. (296 aa) | ||||
tpiA | Triosephosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (255 aa) | ||||
ubiE | Ubiquinone/menaquinone biosynthesis C-methyltransferase UbiE; Methyltransferase required for the conversion of demethylmenaquinol (DMKH2) to menaquinol (MKH2) and the conversion of 2-polyprenyl-6-methoxy-1,4-benzoquinol (DDMQH2) to 2-polyprenyl-3- methyl-6-methoxy-1,4-benzoquinol (DMQH2). (251 aa) | ||||
lldP | L-lactate permease; Transports L-lactate across the membrane. Can also transport D-lactate and glycolate. Seems to be driven by a proton motive force. (551 aa) | ||||
argD | Bifunctional acetylornithine aminotransferase and succinyldiaminopimelate aminotransferase; Involved in both the arginine and lysine biosynthetic pathways; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. ArgD subfamily. (406 aa) | ||||
gltD | Glutamate synthase, 4Fe-4S protein, small subunit; Catalyzes the conversion of L-glutamine and 2-oxoglutarate into two molecules of L-glutamate. (472 aa) | ||||
argA | Amino acid N-acetyltransferase and inactive acetylglutamate kinase; N-acetylglutamate synthase; amino acid acetyltransferase; Protein involved in arginine biosynthetic process; Belongs to the acetyltransferase family. ArgA subfamily. (443 aa) | ||||
focB | Putative formate transporter; Involved in the bidirectional transport of formate. Belongs to the FNT transporter (TC 2.A.44) family. (282 aa) | ||||
fixC | Putative oxidoreductase; Could be part of an electron transfer system required for anaerobic carnitine reduction; Belongs to the ETF-QO/FixC family. (428 aa) | ||||
focA | Formate channel; Involved in the bidirectional transport of formate; Belongs to the FNT transporter (TC 2.A.44) family. (285 aa) | ||||
fixX | Putative 4Fe-4S ferredoxin-type protein; Could be part of an electron transfer system required for anaerobic carnitine reduction. Could be a 3Fe-4S cluster-containing protein; Belongs to the bacterial-type ferredoxin family. FixX subfamily. (95 aa) | ||||
fdnG | Formate dehydrogenase-N, alpha subunit, nitrate-inducible; Formate dehydrogenase allows E.coli to use formate as major electron donor during anaerobic respiration, when nitrate is used as electron acceptor. The alpha subunit FdnG contains the formate oxidation site. Electrons are transferred from formate to menaquinone in the gamma subunit (FdnI), through the 4Fe-4S clusters in the beta subunit (FdnH). Formate dehydrogenase-N is part of a system that generates proton motive force, together with the dissimilatory nitrate reductase (Nar). (1015 aa) | ||||
fdnH | Formate dehydrogenase-N, Fe-S (beta) subunit, nitrate-inducible; Formate dehydrogenase allows E.coli to use formate as major electron donor during anaerobic respiration, when nitrate is used as electron acceptor. The beta subunit FdnH is an electron transfer unit containing 4 iron-sulfur clusters; it serves as a conduit for electrons that are transferred from the formate oxidation site in the alpha subunit (FdnG) to the menaquinone associated with the gamma subunit (FdnI) of formate dehydrogenase-N. Formate dehydrogenase-N is part of a system that generates proton motive force, togethe [...] (294 aa) | ||||
gapA | Glyceraldehyde-3-phosphate dehydrogenase A; Catalyzes the oxidative phosphorylation of glyceraldehyde 3- phosphate (G3P) to 1,3-bisphosphoglycerate (BPG) using the cofactor NAD. The first reaction step involves the formation of a hemiacetal intermediate between G3P and a cysteine residue, and this hemiacetal intermediate is then oxidized to a thioester, with concomitant reduction of NAD to NADH. The reduced NADH is then exchanged with the second NAD, and the thioester is attacked by a nucleophilic inorganic phosphate to produce BPG. (331 aa) | ||||
apbE | Putative thiamine-synthetic flavin transferase lipoprotein; Flavin transferase that catalyzes the transfer of the FMN moiety of FAD and its covalent binding to the hydroxyl group of a threonine residue in a target flavoprotein such as NqrB and NqrC, two subunits of the NQR complex. (351 aa) | ||||
nuoN | NADH:ubiquinone oxidoreductase, membrane subunit N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (485 aa) | ||||
nuoF | NADH:ubiquinone oxidoreductase, chain F; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (445 aa) | ||||
nuoE | NADH:ubiquinone oxidoreductase, chain E; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (166 aa) | ||||
fdhF | Formate dehydrogenase-H, selenopolypeptide subunit; Decomposes formic acid to hydrogen and carbon dioxide under anaerobic conditions in the absence of exogenous electron acceptors. (715 aa) | ||||
pgi | Glucosephosphate isomerase; Protein involved in glycolysis and gluconeogenesis; Belongs to the GPI family. (549 aa) |