node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
araD | lacZ | b0061 | b0344 | L-ribulose-5-phosphate 4-epimerase; Involved in the degradation of L-arabinose. Catalyzes the interconversion of L-ribulose 5-phosphate (LRu5P) and D- xylulose 5-phosphate (D-Xu5P) via a retroaldol/aldol mechanism (carbon- carbon bond cleavage analogous to a class II aldolase reaction). | beta-D-galactosidase; Protein involved in carbohydrate catabolic process; Belongs to the glycosyl hydrolase 2 family. | 0.405 |
araD | sgbE | b0061 | b3583 | L-ribulose-5-phosphate 4-epimerase; Involved in the degradation of L-arabinose. Catalyzes the interconversion of L-ribulose 5-phosphate (LRu5P) and D- xylulose 5-phosphate (D-Xu5P) via a retroaldol/aldol mechanism (carbon- carbon bond cleavage analogous to a class II aldolase reaction). | L-ribulose-5-phosphate 4-epimerase; Catalyzes the interconversion of L-ribulose 5-phosphate (LRu5P) and D-xylulose 5-phosphate (D-Xu5P) via a retroaldol/aldol mechanism (carbon-carbon bond cleavage analogous to a class II aldolase reaction). May be involved in the utilization of 2,3-diketo-L-gulonate. | 0.904 |
araD | ulaF | b0061 | b4198 | L-ribulose-5-phosphate 4-epimerase; Involved in the degradation of L-arabinose. Catalyzes the interconversion of L-ribulose 5-phosphate (LRu5P) and D- xylulose 5-phosphate (D-Xu5P) via a retroaldol/aldol mechanism (carbon- carbon bond cleavage analogous to a class II aldolase reaction). | L-ribulose 5-phosphate 4-epimerase; Catalyzes the isomerization of L-ribulose 5-phosphate to D- xylulose 5-phosphate. Is involved in the anaerobic L-ascorbate utilization; Belongs to the aldolase class II family. AraD/FucA subfamily. | 0.903 |
araD | xylB | b0061 | b3564 | L-ribulose-5-phosphate 4-epimerase; Involved in the degradation of L-arabinose. Catalyzes the interconversion of L-ribulose 5-phosphate (LRu5P) and D- xylulose 5-phosphate (D-Xu5P) via a retroaldol/aldol mechanism (carbon- carbon bond cleavage analogous to a class II aldolase reaction). | Xylulokinase; Catalyzes the phosphorylation of D-xylulose to D-xylulose 5- phosphate. Also catalyzes the phosphorylation of 1- deoxy-D-xylulose to 1-deoxy-D-xylulose 5-phosphate, with lower efficiency. Can also use D-ribulose, xylitol and D- arabitol, but D-xylulose is preferred over the other substrates. Has a weak substrate-independent Mg-ATP-hydrolyzing activity ; Belongs to the FGGY kinase family. | 0.983 |
hisG | lacZ | b2019 | b0344 | ATP phosphoribosyltransferase; Catalyzes the condensation of ATP and 5-phosphoribose 1- diphosphate to form N'-(5'-phosphoribosyl)-ATP (PR-ATP). Has a crucial role in the pathway because the rate of histidine biosynthesis seems to be controlled primarily by regulation of HisG enzymatic activity. | beta-D-galactosidase; Protein involved in carbohydrate catabolic process; Belongs to the glycosyl hydrolase 2 family. | 0.544 |
lacZ | araD | b0344 | b0061 | beta-D-galactosidase; Protein involved in carbohydrate catabolic process; Belongs to the glycosyl hydrolase 2 family. | L-ribulose-5-phosphate 4-epimerase; Involved in the degradation of L-arabinose. Catalyzes the interconversion of L-ribulose 5-phosphate (LRu5P) and D- xylulose 5-phosphate (D-Xu5P) via a retroaldol/aldol mechanism (carbon- carbon bond cleavage analogous to a class II aldolase reaction). | 0.405 |
lacZ | hisG | b0344 | b2019 | beta-D-galactosidase; Protein involved in carbohydrate catabolic process; Belongs to the glycosyl hydrolase 2 family. | ATP phosphoribosyltransferase; Catalyzes the condensation of ATP and 5-phosphoribose 1- diphosphate to form N'-(5'-phosphoribosyl)-ATP (PR-ATP). Has a crucial role in the pathway because the rate of histidine biosynthesis seems to be controlled primarily by regulation of HisG enzymatic activity. | 0.544 |
sgbE | araD | b3583 | b0061 | L-ribulose-5-phosphate 4-epimerase; Catalyzes the interconversion of L-ribulose 5-phosphate (LRu5P) and D-xylulose 5-phosphate (D-Xu5P) via a retroaldol/aldol mechanism (carbon-carbon bond cleavage analogous to a class II aldolase reaction). May be involved in the utilization of 2,3-diketo-L-gulonate. | L-ribulose-5-phosphate 4-epimerase; Involved in the degradation of L-arabinose. Catalyzes the interconversion of L-ribulose 5-phosphate (LRu5P) and D- xylulose 5-phosphate (D-Xu5P) via a retroaldol/aldol mechanism (carbon- carbon bond cleavage analogous to a class II aldolase reaction). | 0.904 |
sgbE | ulaF | b3583 | b4198 | L-ribulose-5-phosphate 4-epimerase; Catalyzes the interconversion of L-ribulose 5-phosphate (LRu5P) and D-xylulose 5-phosphate (D-Xu5P) via a retroaldol/aldol mechanism (carbon-carbon bond cleavage analogous to a class II aldolase reaction). May be involved in the utilization of 2,3-diketo-L-gulonate. | L-ribulose 5-phosphate 4-epimerase; Catalyzes the isomerization of L-ribulose 5-phosphate to D- xylulose 5-phosphate. Is involved in the anaerobic L-ascorbate utilization; Belongs to the aldolase class II family. AraD/FucA subfamily. | 0.928 |
sgbE | xylB | b3583 | b3564 | L-ribulose-5-phosphate 4-epimerase; Catalyzes the interconversion of L-ribulose 5-phosphate (LRu5P) and D-xylulose 5-phosphate (D-Xu5P) via a retroaldol/aldol mechanism (carbon-carbon bond cleavage analogous to a class II aldolase reaction). May be involved in the utilization of 2,3-diketo-L-gulonate. | Xylulokinase; Catalyzes the phosphorylation of D-xylulose to D-xylulose 5- phosphate. Also catalyzes the phosphorylation of 1- deoxy-D-xylulose to 1-deoxy-D-xylulose 5-phosphate, with lower efficiency. Can also use D-ribulose, xylitol and D- arabitol, but D-xylulose is preferred over the other substrates. Has a weak substrate-independent Mg-ATP-hydrolyzing activity ; Belongs to the FGGY kinase family. | 0.926 |
talA | talB | b2464 | b0008 | Transaldolase A; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway. | Transaldolase B; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway. | 0.902 |
talA | tktA | b2464 | b2935 | Transaldolase A; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway. | Transketolase 1, thiamine triphosphate-binding; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate. Thus, catalyzes the reversible transfer of a two-carbon ketol group from sedoheptulose-7-phosphate to glyceraldehyde-3-phosphate, producing xylulose-5-phosphate and ribose- 5-phosphate. | 0.996 |
talA | tktB | b2464 | b2465 | Transaldolase A; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway. | Transketolase 2, thiamine triphosphate-binding; Catalyzes the reversible transfer of a two-carbon ketol group from sedoheptulose-7-phosphate to glyceraldehyde-3-phosphate, producing xylulose-5-phosphate and ribose-5-phosphate. Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate (By similarity). | 0.999 |
talA | xylB | b2464 | b3564 | Transaldolase A; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway. | Xylulokinase; Catalyzes the phosphorylation of D-xylulose to D-xylulose 5- phosphate. Also catalyzes the phosphorylation of 1- deoxy-D-xylulose to 1-deoxy-D-xylulose 5-phosphate, with lower efficiency. Can also use D-ribulose, xylitol and D- arabitol, but D-xylulose is preferred over the other substrates. Has a weak substrate-independent Mg-ATP-hydrolyzing activity ; Belongs to the FGGY kinase family. | 0.599 |
talB | talA | b0008 | b2464 | Transaldolase B; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway. | Transaldolase A; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway. | 0.902 |
talB | tktA | b0008 | b2935 | Transaldolase B; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway. | Transketolase 1, thiamine triphosphate-binding; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate. Thus, catalyzes the reversible transfer of a two-carbon ketol group from sedoheptulose-7-phosphate to glyceraldehyde-3-phosphate, producing xylulose-5-phosphate and ribose- 5-phosphate. | 0.997 |
talB | tktB | b0008 | b2465 | Transaldolase B; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway. | Transketolase 2, thiamine triphosphate-binding; Catalyzes the reversible transfer of a two-carbon ketol group from sedoheptulose-7-phosphate to glyceraldehyde-3-phosphate, producing xylulose-5-phosphate and ribose-5-phosphate. Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate (By similarity). | 0.996 |
talB | xylB | b0008 | b3564 | Transaldolase B; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway. | Xylulokinase; Catalyzes the phosphorylation of D-xylulose to D-xylulose 5- phosphate. Also catalyzes the phosphorylation of 1- deoxy-D-xylulose to 1-deoxy-D-xylulose 5-phosphate, with lower efficiency. Can also use D-ribulose, xylitol and D- arabitol, but D-xylulose is preferred over the other substrates. Has a weak substrate-independent Mg-ATP-hydrolyzing activity ; Belongs to the FGGY kinase family. | 0.694 |
tktA | talA | b2935 | b2464 | Transketolase 1, thiamine triphosphate-binding; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate. Thus, catalyzes the reversible transfer of a two-carbon ketol group from sedoheptulose-7-phosphate to glyceraldehyde-3-phosphate, producing xylulose-5-phosphate and ribose- 5-phosphate. | Transaldolase A; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway. | 0.996 |
tktA | talB | b2935 | b0008 | Transketolase 1, thiamine triphosphate-binding; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate. Thus, catalyzes the reversible transfer of a two-carbon ketol group from sedoheptulose-7-phosphate to glyceraldehyde-3-phosphate, producing xylulose-5-phosphate and ribose- 5-phosphate. | Transaldolase B; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway. | 0.997 |