Your Input: | |||||
uvrA | ATPase and DNA damage recognition protein of nucleotide excision repair excinuclease UvrABC; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate. (940 aa) | ||||
radA | DNA repair protein; DNA-dependent ATPase involved in processing of recombination intermediates, plays a role in repairing DNA breaks. Stimulates the branch migration of RecA-mediated strand transfer reactions, allowing the 3' invading strand to extend heteroduplex DNA faster. Binds ssDNA in the presence of ADP but not other nucleotides, has ATPase activity that is stimulated by ssDNA and various branched DNA structures, but inhibited by SSB. Does not have RecA's homology-searching function. Genetic experiments involving combination of radA mutations with mutations in recA, recB, recG, [...] (460 aa) | ||||
lexA | Transcriptional repressor of SOS regulon; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. Binds to the 16 bp palindromic sequence 5'-CTGTATATATATACAG-3'. In the presence of single- stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair. Implicated in hydroxy radical-mediated cell death induced by hydroxyurea treatment .The SOS response controls an apoptotic-like death (ALD) induced (in the absence [...] (202 aa) | ||||
hupA | HU, DNA-binding transcriptional regulator, alpha subunit; Histone-like DNA-binding protein which is capable of wrapping DNA to stabilize it, and thus to prevent its denaturation under extreme environmental conditions; Belongs to the bacterial histone-like protein family. (90 aa) | ||||
hslU | Molecular chaperone and ATPase component of HslUV protease; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis. (443 aa) | ||||
recQ | ATP-dependent DNA helicase; Involved in the RecF recombination pathway; its gene expression is under the regulation of the SOS system. It is a DNA helicase; Belongs to the helicase family. RecQ subfamily. (609 aa) | ||||
uvrD | DNA-dependent ATPase I and helicase II; A helicase with DNA-dependent ATPase activity. Unwinds DNA duplexes with 3' to 5' polarity with respect to the bound strand. Initiates unwinding more efficiently from a nicked substrate than ds duplex DNA. Involved in the post-incision events of nucleotide excision repair and methyl-directed mismatch repair, and probably also in repair of alkylated DNA (Probable). (720 aa) | ||||
recF | Gap repair protein; The RecF protein is involved in DNA metabolism; it is required for DNA replication and normal SOS inducibility. RecF binds preferentially to single-stranded, linear DNA. It also seems to bind ATP. (357 aa) | ||||
dinD | Protein involved in DNA repair. (274 aa) | ||||
slmA | Nucleoid occlusion factor, anti-FtsZ division inhibitor; Required for nucleoid occlusion (NO) phenomenon, which prevents Z-ring formation and cell division over the nucleoid. Acts as a DNA-associated cell division inhibitor that binds simultaneously chromosomal DNA and FtsZ, and disrupts the assembly of FtsZ polymers. SlmA-DNA-binding sequences (SBS) are dispersed on non-Ter regions of the chromosome, preventing FtsZ polymerization at these regions. (198 aa) | ||||
sspB | ClpXP protease specificity enhancing factor; Enhances recognition of ssrA-tagged proteins by the ClpX-ClpP protease; the ssrA degradation tag (AANDENYALAA) is added trans- translationally to proteins that are stalled on the ribosome, freeing the ribosome and targeting stalled peptides for degradation. SspB activates the ATPase activity of ClpX. Seems to act in concert with SspA in the regulation of several proteins during exponential and stationary-phase growth. (165 aa) | ||||
recA | DNA recombination and repair protein; Required for homologous recombination and the bypass of mutagenic DNA lesions by the SOS response. Catalyzes ATP-driven homologous pairing and strand exchange of DNA molecules necessary for DNA recombinational repair. Catalyzes the hydrolysis of ATP in the presence of single-stranded DNA, the ATP-dependent uptake of single- stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. The SOS response controls an apoptotic-like death (ALD) induced (in the absence of the mazE-mazF toxin-antitoxin module) in resp [...] (353 aa) | ||||
recX | Regulatory protein for RecA; Modulates RecA activity through direct physical interaction. Can inhibit both RecA recombinase and coprotease activities. May have a regulatory role during the SOS response. Inhibits DNA strand exchange in vitro; Belongs to the RecX family. (166 aa) | ||||
recN | Recombination and repair protein; May be involved in recombinational repair of damaged DNA; Belongs to the RecN family. (553 aa) | ||||
clpB | Protein disaggregation chaperone; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK. (857 aa) | ||||
zipA | FtsZ stabilizer; Essential cell division protein that stabilizes the FtsZ protofilaments by cross-linking them and that serves as a cytoplasmic membrane anchor for the Z ring. Also required for the recruitment to the septal ring of the downstream cell division proteins FtsK, FtsQ, FtsL and FtsN. ZipA overproduction protects FtsZ from degradation by ClpP by preventing recognition by ClpX. Does not affect the GTPase activity of FtsZ. (328 aa) | ||||
uvrC | Excinuclease UvrABC, endonuclease subunit; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrC both incises the 5' and 3' sides of the lesion. The N-terminal half is responsible for the 3' incision and the C-terminal half is responsible for the 5' incision. (610 aa) | ||||
ruvA | Component of RuvABC resolvasome, regulatory subunit; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing. RuvA stimulates, in the presence of DNA, the weak ATPase activity of RuvB. Binds both single- and double-stranded DNA (dsDNA). Binds preferentially to supercoiled rather than to relaxed dsDNA. (203 aa) | ||||
ruvB | ATP-dependent DNA helicase, component of RuvABC resolvasome; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing. Belongs to the RuvB family. (336 aa) | ||||
yebG | DNA damage-inducible protein regulated by LexA; Protein involved in DNA repair and SOS response. (96 aa) | ||||
umuC | Translesion error-prone DNA polymerase V subunit; Involved in UV protection and mutation. Poorly processive, error-prone DNA polymerase involved in translesion repair. Essential for induced (or SOS) mutagenesis. Able to replicate DNA across DNA lesions (thymine photodimers and abasic sites, translesion synthesis) in the presence of activated RecA; efficiency is maximal in the presence of the beta sliding-clamp and clamp-loading complex of DNA polymerase III plus single-stranded binding protein (SSB). RecA and to a lesser extent the beta clamp- complex may target Pol V to replication co [...] (422 aa) | ||||
umuD | Translesion error-prone DNA polymerase V subunit; Involved in UV protection and mutation. Poorly processive, error-prone DNA polymerase involved in translesion repair. Essential for induced (or SOS) mutagenesis. Able to replicate DNA across DNA lesions (thymine photodimers and abasic sites, called translesion synthesis) in the presence of activated RecA; efficiency is maximal in the presence of the beta sliding-clamp and clamp-loading complex of DNA polymerase III plus single-stranded binding protein (SSB). RecA and to a lesser extent the beta clamp-complex may target Pol V to replicat [...] (139 aa) | ||||
minC | Inhibitor of FtsZ ring polymerization; Cell division inhibitor that blocks the formation of polar Z ring septums. Rapidly oscillates between the poles of the cell to destabilize FtsZ filaments that have formed before they mature into polar Z rings. Prevents FtsZ polymerization. Belongs to the MinC family. (231 aa) | ||||
dinI | DNA damage-inducible protein I; Involved in SOS regulation. Inhibits RecA by preventing RecA to bind ssDNA. Can displace ssDNA from RecA. (81 aa) | ||||
zapC | FtsZ stabilizer; Contributes to the efficiency of the cell division process by stabilizing the polymeric form of the cell division protein FtsZ. Acts by promoting interactions between FtsZ protofilaments and suppressing the GTPase activity of FtsZ. (180 aa) | ||||
mukB | Chromosome condensin MukBEF, ATPase and DNA-binding subunit; Plays a central role in chromosome condensation, segregation and cell cycle progression. Functions as a homodimer, which is essential for chromosome partition. Involved in negative DNA supercoiling in vivo, and by this means organizes and compacts chromosomes. May achieve or facilitate chromosome segregation by condensation of DNA from both sides of a centrally located replisome during cell division. Stimulates both DNA relaxation and to a lesser extent decatenation activity of topoisomerase IV. (1486 aa) | ||||
clpA | ATPase and specificity subunit of ClpA-ClpP ATP-dependent serine protease, chaperone activity; ATP-dependent specificity component of the ClpAP protease. It directs the protease to specific substrates. It has unfoldase activity. The primary function of the ClpA-ClpP complex appears to be the degradation of unfolded or abnormal proteins. (758 aa) | ||||
uvrB | Exision nuclease of nucleotide excision repair, DNA damage recognition component; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesi [...] (673 aa) | ||||
lon | DNA-binding ATP-dependent protease La; ATP-dependent serine protease that mediates the selective degradation of mutant and abnormal proteins as well as certain short- lived regulatory proteins, including some antitoxins. Required for cellular homeostasis and for survival from DNA damage and developmental changes induced by stress. Degrades polypeptides processively to yield small peptide fragments that are 5 to 10 amino acids long. Binds to DNA in a double-stranded, site-specific manner. Endogenous substrates include the regulatory proteins RcsA and SulA, the transcriptional activator [...] (784 aa) | ||||
clpX | ATPase and specificity subunit of ClpX-ClpP ATP-dependent serine protease; ATP-dependent specificity component of the Clp protease. Uses cycles of ATP binding and hydrolysis to unfold proteins and translocate them to the ClpP protease. It directs the protease to specific substrates both with and without the help of adapter proteins such as SspB. Participates in the final steps of RseA-sigma-E degradation, liberating sigma-E to induce the extracytoplasmic-stress response. It may bind to the lambda O substrate protein and present it to the ClpP protease in a form that can be recognized a [...] (424 aa) | ||||
clpP | Proteolytic subunit of ClpA-ClpP and ClpX-ClpP ATP-dependent serine proteases; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. May play the role of a master protease which is attracted to different substrates by different specificity factors such as ClpA or ClpX. Participates in the final steps of RseA-sigma-E degradation, liberating sigma-E to induce the extracytoplasmic-stress response. Degrades antitoxin MazE. (207 aa) | ||||
dinB | DNA polymerase IV; Poorly processive, error-prone DNA polymerase involved in translesion repair and untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by Pol IV. Exhibits no 3'-5' exonuclease (proofreading) activity. Overexpression of Pol IV results in increased frameshift mutagenesis. It is required for stationary-phase adaptive mutation, which provides the bacterium with flexibility in dealing with environmental stress, enhancing long- term survival and evol [...] (351 aa) | ||||
degP | Serine endoprotease (protease Do), membrane-associated; DegP acts as a chaperone at low temperatures but switches to a peptidase (heat shock protein) at higher temperatures. Degrades transiently denatured and unfolded or misfolded proteins which accumulate in the periplasm following heat shock or other stress conditions. DegP is efficient with Val-Xaa and Ile-Xaa peptide bonds, suggesting a preference for beta-branched side chain amino acids. Only unfolded proteins devoid of disulfide bonds appear capable of being cleaved, thereby preventing non-specific proteolysis of folded proteins. [...] (474 aa) | ||||
ftsZ | GTP-binding tubulin-like cell division protein; Essential cell division protein that forms a contractile ring structure (Z ring) at the future cell division site. The regulation of the ring assembly controls the timing and the location of cell division. One of the functions of the FtsZ ring is to recruit other cell division proteins to the septum to produce a new cell wall between the dividing cells. Binds GTP and shows GTPase activity. Polymerization and bundle formation is enhanced by CbeA. (383 aa) | ||||
polB | DNA polymerase II; Thought to be involved in DNA repair and/or mutagenesis. Its processivity is enhanced by the beta sliding clamp (dnaN) and clamp loader. (783 aa) |