STRINGSTRING
relA relA glnD glnD yafQ yafQ dinJ dinJ glnK glnK amtB amtB yeaG yeaG yeaH yeaH fliA fliA glnB glnB rpoS rpoS mqsA mqsA mqsR mqsR glnG glnG glnL glnL metJ metJ
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
relA(p)ppGpp synthetase I/GTP pyrophosphokinase; In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) is a mediator of the stringent response which coordinates a variety of cellular activities in response to changes in nutritional abundance. This enzyme catalyzes the formation of pppGpp which is then hydrolyzed to form ppGpp. The second messengers ppGpp and c-di-GMP together control biofilm formation in response to translational stress; ppGpp represses biofilm formation while c-di-GMP induces it. ppGpp activates transcription of CsrA-antagonistic small RNAs CsrB and CsrC, which d [...] (744 aa)
glnDUridylyltransferase; Modifies, by uridylylation and deuridylylation, the PII regulatory proteins GlnB and GlnK, in response to the nitrogen status of the cell that GlnD senses through the glutamine level. Under low glutamine levels, catalyzes the conversion of the PII proteins and UTP to PII-UMP and PPi, while under higher glutamine levels, GlnD hydrolyzes PII-UMP to PII and UMP (deuridylylation). Thus, controls uridylylation state and activity of the PII proteins, and plays an important role in the regulation of nitrogen assimilation and metabolism. (890 aa)
yafQmRNA interferase toxin of toxin-antitoxin pair YafQ/DinJ; Toxic component of a type II toxin-antitoxin (TA) system. A sequence-specific mRNA endoribonuclease that inhibits translation elongation and induces bacterial stasis. Cleavage occurs between the second and third residue of the Lys codon followed by a G or A (5'AAA(G/A)3'), is reading-frame dependent and occurs within the 5' end of most mRNAs. Ribosome-binding confers the sequence specificity and reading frame- dependence. When overexpressed in liquid media YafQ partially inhibits protein synthesis, with a reduction in growth rat [...] (92 aa)
dinJAntitoxin of YafQ-DinJ toxin-antitoxin system; Antitoxin component of a type II toxin-antitoxin (TA) system. A labile antitoxin that counteracts the effect of cognate toxin YafQ. YafQ and DinJ together bind their own promoter, and repress its expression. There are 2 operators with imperfect inverted repeats (IR) in the dinJ promoter, YafQ-(DinJ)2-YafQ only binds to the first (most upstream) of them to repress transcription; binding to a single IR is sufficient for activity in vivo and in vitro. DinJ alone is as potent a transcriptional repressor as the heterotetramer and also only need [...] (86 aa)
glnKNitrogen assimilation regulatory protein for GlnL, GlnE, and AmtB; P-II indirectly controls the transcription of the glutamine synthetase gene (glnA). P-II prevents NR-II-catalyzed conversion of NR- I to NR-I-phosphate, the transcriptional activator of GlnA. When P-II is uridylylated to P-II-UMP, these events are reversed. When the ratio of Gln to 2-ketoglutarate decreases, P-II is uridylylated to P-II-UMP, which causes the deadenylation of glutamine synthetase by GlnE, so activating the enzyme (By similarity); Belongs to the P(II) protein family. (112 aa)
amtBAmmonium transporter; Involved in the uptake of ammonia; Belongs to the ammonia transporter channel (TC 1.A.11.2) family. (428 aa)
yeaGProtein kinase, endogenous substrate unidentified; autokinase; Belongs to the PrkA family. (644 aa)
yeaHUPF0229 family protein; Belongs to the UPF0229 family. (427 aa)
fliARNA polymerase, sigma 28 (sigma F) factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor controls the expression of flagella-related genes. (239 aa)
glnBRegulatory protein P-II for glutamine synthetase; P-II indirectly controls the transcription of the glutamine synthetase gene (glnA). P-II prevents NR-II-catalyzed conversion of NR- I to NR-I-phosphate, the transcriptional activator of GlnA. When P-II is uridylylated to P-II-UMP, these events are reversed. When the ratio of Gln to 2-ketoglutarate decreases, P-II is uridylylated to P-II-UMP, which causes the deadenylation of glutamine synthetase by GlnE, so activating the enzyme; Belongs to the P(II) protein family. (112 aa)
rpoSRNA polymerase, sigma S (sigma 38) factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the master transcriptional regulator of the stationary phase and the general stress response. Controls, positively or negatively, the expression of several hundred genes, which are mainly involved in metabolism, transport, regulation and stress management. (330 aa)
mqsAAntitoxin for MqsR toxin; Antitoxin component of a type II toxin-antitoxin (TA) system. Labile antitoxin that binds to the MqsR mRNA interferase toxin and neutralizes its endoribonuclease activity. Overexpression prevents MqsR-mediated cessation of cell growth and inhibition of cell proliferation. Initially reported to act as a cotranscription factor with MqsA. Following further experiments, the MqsR-MqsA complex does not bind DNA and all reported data are actually due to a small fraction of free MqsA alone binding DNA. Addition of MqsR to a preformed MqsA-promoter DNA complex causes d [...] (131 aa)
mqsRGCU-specific mRNA interferase toxin of the MqsR-MqsA toxin-antitoxin system; Toxic component of a type II toxin-antitoxin (TA) system. Plays a significant role in the control of biofilm formation and induction of persister cells in the presence of antibiotics. An mRNA interferase which has been reported to be translation-independent. It has also been reported to be translation-dependent. Cleavage has been reported to occur on either side of G in the sequence GCU. Also reported to cleave after C in GC(A/U) sequences. There are only 14 genes in E.coli W3110 (and probably also MG1655) tha [...] (98 aa)
glnGDNA-binding transcriptional regulator NtrC; Member of the two-component regulatory system NtrB/NtrC, which controls expression of the nitrogen-regulated (ntr) genes in response to nitrogen limitation. Phosphorylated NtrC binds directly to DNA and stimulates the formation of open promoter-sigma54-RNA polymerase complexes. Activates transcription of many genes and operons whose products minimize the slowing of growth under nitrogen-limiting conditions, including genes coding for glutamine synthetase (glnA), transporters, amino acid permeases and catabolic enzymes. (469 aa)
glnLSensory histidine kinase in two-component regulatory system with GlnG; Member of the two-component regulatory system NtrB/NtrC, which controls expression of the nitrogen-regulated (ntr) genes in response to nitrogen limitation. Under conditions of nitrogen limitation, NtrB autophosphorylates and transfers the phosphoryl group to NtrC. In the presence of nitrogen, acts as a phosphatase that dephosphorylates and inactivates NtrC. (349 aa)
metJTranscriptional repressor, S-adenosylmethionine-binding; This regulatory protein, when combined with SAM (S- adenosylmethionine) represses the expression of the methionine regulon and of enzymes involved in SAM synthesis. It is also autoregulated. (105 aa)
Your Current Organism:
Escherichia coli K12
NCBI taxonomy Id: 511145
Other names: E. coli str. K-12 substr. MG1655, Escherichia coli MG1655, Escherichia coli str. K-12 substr. MG1655, Escherichia coli str. K12 substr. MG1655, Escherichia coli str. MG1655, Escherichia coli strain MG1655
Server load: low (34%) [HD]